Python 和 Google Colab 从 Sentinel-3 图像下载并可视化地表温度和 NDVI

本文主要是介绍Python 和 Google Colab 从 Sentinel-3 图像下载并可视化地表温度和 NDVI,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

与 Sentinel-2 和 Landsat 等卫星的光学图像相比,下载和处理 Sentinel-3 图像,尤其是地表温度 (LST) 具有挑战性。这是由于存储数据的特定 NetCDF 格式造成的,并且 LST 值的正确投影需要一些额外的工作。在本教程中,我将在 Google Colab 环境中提供 Python 代码,以便于下载 NetCDF 格式的 Sentinel-3 图像、提取并解压缩这些文件、读取各种图层或矩阵(例如 LST、NDVI、Flags 等) ,并并排创建无云 NDVI 和 LST 的视觉表示。该可视化将展示 Sentinel-3 于 2023 年 6 月在加利福尼亚州捕获的数据。

目录

  1. 🌟简介
  2. 🚀 注册“哥白尼数据空间生态系统”
  3. 🔍 安装并导入库
  4. ⏳ 过滤并提交查询
  5. 📥 下载“NetCDF”文件
  6. 🛠️ 转换为 Geotiff(地表温度和 NDVI)
  7. 📈 绘制地表温度与 NDVI 的关系图
  8. 📈 绘制地表温度与 NDVI(无云)的关系图

🌟简介

Sentinel-3 是欧洲航天局哥白尼计划的关键组成部分,在监测地球环境方面发挥着关键作用。它提供的重要数据集之一是地表温度 (LST)。LST 是地球表面热状态的关键指标,为气候研究、农业监测和城市热岛分析等各种应用提供了宝贵的信息。

与捕获可见光谱信息的光学图像不同,Sentinel-3 的 LST 产品深入研究红外领域。通过测量地球表面发出的热辐射,Sentinel-3 能够推导地表温度,有助于我们了解不同地形的温度变化。

地表温度 (LST) 图像提供覆盖全球的每日时间分辨率,空间分辨率约为 1 公里。本教程提供了用于下载和处理 Sentinel-3 图像的分步 Python 脚本。

🚀 注册“哥白尼数据空间生态系统”

第一步需要在欧洲航天局哥白尼计划的新网站上创建一个帐户。关于

🔍 安装并导入库

要设置环境,需要安装并导入以下库:

pip install pandas rasterio netCDF4 rioxarray
import os
import re
import sys
import random
from pathlib import Pathimport requests
import json
import xml.etree.ElementTree as ET
import certifiimport pandas as pd
import numpy as npimport rasterio
import matplotlib.pyplot as plt
import matplotlib.image
from rasterio.windows import Windowimport netCDF4 as ncimport rioxarray
from rasterio.control import GroundControlPoint

⏳ 过滤并提交查询

安装并导入必要的库后,下一步涉及通过指定某些参数来探索数据目录。这些参数包括卫星名称 (SENTINEL-3)、产品级别(LST 表示地表温度)、AOI(点或多边形)以及开始和结束日期。

url_dataspace = "https://catalogue.dataspace.copernicus.eu/odata/v1"# Filtering
satellite = "SENTINEL-3"
level= "LST"
cloud_cover_max = 0.2aoi_point ="POINT(-120.9970 37.6393)"
aoi_polygon = "POLYGON ((-121.0616 37.6391, -120.966 37.6391, -120.966 37.6987, -121.0616 37.6987, -121.0616 37.6391))"start_date = "2023-06-01"
end_date = "2023-06-10"
start_date_full =start_date+"T00:00:00.000Z"
end_date_full = end_date +"T00:00:00.000Z"

 使用这些参数,我们可以提交查询来获取可用图像的列表:

query = f"{url_dataspace}/Products?$filter=Collection/Name eq '{satellite}' and Attributes/OData.CSC.StringAttribute/any(att:att/Name eq 'productType' and att/OData.CSC.StringAttribute/Value eq '{level}') and OData.CSC.Intersects(area=geography'SRID=4326;{aoi_point}') and ContentDate/Start gt {start_date_full} and ContentDate/Start lt {end_date_full}"
response = requests.get(query).json()
result = pd.DataFrame.from_dict(response["value"])# print first 10 results
result.head(10)

数据框将是:

这篇关于Python 和 Google Colab 从 Sentinel-3 图像下载并可视化地表温度和 NDVI的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/784339

相关文章

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”

VSCode设置python SDK路径的实现步骤

《VSCode设置pythonSDK路径的实现步骤》本文主要介绍了VSCode设置pythonSDK路径的实现步骤,包括命令面板切换、settings.json配置、环境变量及虚拟环境处理,具有一定... 目录一、通过命令面板快速切换(推荐方法)二、通过 settings.json 配置(项目级/全局)三、

Python struct.unpack() 用法及常见错误详解

《Pythonstruct.unpack()用法及常见错误详解》struct.unpack()是Python中用于将二进制数据(字节序列)解析为Python数据类型的函数,通常与struct.pa... 目录一、函数语法二、格式字符串详解三、使用示例示例 1:解析整数和浮点数示例 2:解析字符串示例 3:解

Python程序打包exe,单文件和多文件方式

《Python程序打包exe,单文件和多文件方式》:本文主要介绍Python程序打包exe,单文件和多文件方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python 脚本打成exe文件安装Pyinstaller准备一个ico图标打包方式一(适用于文件较少的程

Macos创建python虚拟环境的详细步骤教学

《Macos创建python虚拟环境的详细步骤教学》在macOS上创建Python虚拟环境主要通过Python内置的venv模块实现,也可使用第三方工具如virtualenv,下面小编来和大家简单聊聊... 目录一、使用 python 内置 venv 模块(推荐)二、使用 virtualenv(兼容旧版 P