scikit-learn KNN实现糖尿病预测

2024-03-07 07:58

本文主要是介绍scikit-learn KNN实现糖尿病预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

随书代码,阅读笔记。

KNN是一种有监督的机器学习算法,可以解决分类问题,也可以解决回归问题。

算法优点:准确性高,对异常值和噪声有较高的容忍度;

算法缺点:计算量大,内存消耗也比较大。

针对算法计算量大,有一些改进的数据结构,避免重复计算K-D Tree, Ball Tree。

算法变种:根据邻居的距离,分配不同权重。另外一个变种是指定半径。

  • KNN进行分类
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import pandas as pdfrom sklearn.datasets.samples_generator import make_blobs
# 生成数据
centers = [[-2, 2], [2, 2], [0, 4]]
X, y = make_blobs(n_samples=60, centers=centers, random_state=0, cluster_std=0.60)# 画出数据
plt.figure(figsize=(16, 10), dpi=144)
c = np.array(centers)
plt.scatter(X[:, 0], X[:, 1], c=y, s=100, cmap='cool');         # 画出样本
plt.scatter(c[:, 0], c[:, 1], s=100, marker='^', c='orange');   # 画出中心点from sklearn.neighbors import KNeighborsClassifier
# 模型训练
k = 5
clf = KNeighborsClassifier(n_neighbors=k)
clf.fit(X, y);# 进行预测
X_sample = [0, 2]
y_sample = clf.predict(X_sample);
neighbors = clf.kneighbors(X_sample, return_distance=False);# 画出示意图
plt.figure(figsize=(16, 10), dpi=144)
plt.scatter(X[:, 0], X[:, 1], c=y, s=100, cmap='cool');    # 样本
plt.scatter(c[:, 0], c[:, 1], s=100, marker='^', c='k');   # 中心点
plt.scatter(X_sample[0], X_sample[1], marker="x", c=y_sample, s=100, cmap='cool')    # 待预测的点for i in neighbors[0]:plt.plot([X[i][0], X_sample[0]], [X[i][1], X_sample[1]], 'k--', linewidth=0.6);    # 预测点与距离最近的 5 个样本的连线

  • KNN进行回归拟合
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np# 生成训练样本
n_dots = 40
X = 5 * np.random.rand(n_dots, 1)
y = np.cos(X).ravel()# 添加一些噪声
y += 0.2 * np.random.rand(n_dots) - 0.1# 训练模型
from sklearn.neighbors import KNeighborsRegressor
k = 5
knn = KNeighborsRegressor(k)
knn.fit(X, y);# 生成足够密集的点并进行预测
T = np.linspace(0, 5, 500)[:, np.newaxis]
y_pred = knn.predict(T)
knn.score(X, y)#output:0.98579189493611052# 画出拟合曲线
plt.figure(figsize=(16, 10), dpi=144)
plt.scatter(X, y, c='g', label='data', s=100)         # 画出训练样本
plt.plot(T, y_pred, c='k', label='prediction', lw=4)  # 画出拟合曲线
plt.axis('tight')
plt.title("KNeighborsRegressor (k = %i)" % k)
plt.show()

  • KNN 实现糖尿病预测
    %matplotlib inline
    import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd# 加载数据
    data = pd.read_csv('datasets/pima-indians-diabetes/diabetes.csv')
    print('dataset shape {}'.format(data.shape))
    data.head()data.groupby("Outcome").size()
    #Outcome
    #0    500 无糖尿病
    #1    268 有糖尿病
    #dtype: int64X = data.iloc[:, 0:8]
    Y = data.iloc[:, 8]
    print('shape of X {}; shape of Y {}'.format(X.shape, Y.shape))from sklearn.model_selection import train_test_split
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2);from sklearn.neighbors import KNeighborsClassifier, RadiusNeighborsClassifiermodels = []
    models.append(("KNN", KNeighborsClassifier(n_neighbors=2)))
    models.append(("KNN with weights", KNeighborsClassifier(n_neighbors=2, weights="distance")))
    models.append(("Radius Neighbors", RadiusNeighborsClassifier(n_neighbors=2, radius=500.0)))results = []
    for name, model in models:model.fit(X_train, Y_train)results.append((name, model.score(X_test, Y_test)))
    for i in range(len(results)):print("name: {}; score: {}".format(results[i][0],results[i][1]))#name: KNN; score: 0.681818181818
    #name: KNN with weights; score: 0.636363636364
    #name: Radius Neighbors; score: 0.62987012987from sklearn.model_selection import KFold
    from sklearn.model_selection import cross_val_score#kfold 训练10次,计算10次的平均准确率
    results = []
    for name, model in models:kfold = KFold(n_splits=10)cv_result = cross_val_score(model, X, Y, cv=kfold)results.append((name, cv_result))
    for i in range(len(results)):print("name: {}; cross val score: {}".format(results[i][0],results[i][1].mean()))#name: KNN; cross val score: 0.714764183185
    #name: KNN with weights; cross val score: 0.677050580998
    #name: Radius Neighbors; cross val score: 0.6497265892#模型训练
    knn = KNeighborsClassifier(n_neighbors=2)
    knn.fit(X_train, Y_train)
    train_score = knn.score(X_train, Y_train)
    test_score = knn.score(X_test, Y_test)
    print("train score: {}; test score: {}".format(train_score, test_score))#画出学习曲线
    from sklearn.model_selection import ShuffleSplit
    from common.utils import plot_learning_curveknn = KNeighborsClassifier(n_neighbors=2)
    cv = ShuffleSplit(n_splits=10, test_size=0.2, random_state=0)
    plt.figure(figsize=(10, 6), dpi=200)
    plot_learning_curve(plt, knn, "Learn Curve for KNN Diabetes", X, Y, ylim=(0.0, 1.01), cv=cv);#数据可视化
    # 从8个特征中选择2个最重要的特征进行可视化from sklearn.feature_selection import SelectKBestselector = SelectKBest(k=2)
    X_new = selector.fit_transform(X, Y)
    X_new[0:5]results = []
    for name, model in models:kfold = KFold(n_splits=10)cv_result = cross_val_score(model, X_new, Y, cv=kfold)results.append((name, cv_result))
    for i in range(len(results)):print("name: {}; cross val score: {}".format(results[i][0],results[i][1].mean()))# 画出数据
    plt.figure(figsize=(10, 6), dpi=200)
    plt.ylabel("BMI")
    plt.xlabel("Glucose")
    plt.scatter(X_new[Y==0][:, 0], X_new[Y==0][:, 1], c='r', s=20, marker='o');         # 画出样本
    plt.scatter(X_new[Y==1][:, 0], X_new[Y==1][:, 1], c='g', s=20, marker='^');         # 画出样本#2个特征和8个特征得到的结果差不多。分类效果达到了瓶颈

KNN对糖尿病进行测试,无法得到比较高的预测准确性

扩展阅读

这篇关于scikit-learn KNN实现糖尿病预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/782855

相关文章

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

MySQL 横向衍生表(Lateral Derived Tables)的实现

《MySQL横向衍生表(LateralDerivedTables)的实现》横向衍生表适用于在需要通过子查询获取中间结果集的场景,相对于普通衍生表,横向衍生表可以引用在其之前出现过的表名,本文就来... 目录一、横向衍生表用法示例1.1 用法示例1.2 使用建议前面我们介绍过mysql中的衍生表(From子句