scikit-learn 支持向量机实现乳腺癌检测

2024-03-07 07:58

本文主要是介绍scikit-learn 支持向量机实现乳腺癌检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

随书代码,阅读笔记。

  • 载入数据并准备测试机和训练集
# 载入数据
from sklearn.datasets import load_breast_cancercancer = load_breast_cancer()
X = cancer.data
y = cancer.target
print('data shape: {0}; no. positive: {1}; no. negative: {2}'.format(X.shape, y[y==1].shape[0], y[y==0].shape[0]))# 准备训练集和测试集
from sklearn.model_selection import train_test_splitX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
  • 使用高斯核函数
from sklearn.svm import SVCclf = SVC(C=1.0, kernel='rbf', gamma=0.1)
clf.fit(X_train, y_train)
train_score = clf.score(X_train, y_train)
test_score = clf.score(X_test, y_test)
print('train score: {0}; test score: {1}'.format(train_score, test_score))#output:train score: 1.0; test score: 0.526315789474

从代码中可以看出,在训练集上得分很高,但是在测试集上表现很差。

很明显,过拟合了。因为我们的数据集很小,高斯核函数太复杂,容易造成过拟合。

我们尝试着修改高斯核函数的参数,看看效果如何:

from common.utils import plot_param_curve
from sklearn.model_selection import GridSearchCVgammas = np.linspace(0, 0.0003, 30)
param_grid = {'gamma': gammas}
clf = GridSearchCV(SVC(), param_grid, cv=5) # cv:交叉验证参数,默认是None, 使用三折交叉验证,指定 fold数量, default = 3
clf.fit(X, y)
print("best param: {0}\nbest score: {1}".format(clf.best_params_,clf.best_score_))plt.figure(figsize=(10, 4), dpi=144)
plot_param_curve(plt, gammas, clf.cv_results_, xlabel='gamma');#output:
#
# best param: {'gamma': 0.00011379310344827585}
# best score: 0.936731107206

使用自动搜索出来的参数gamma = 0.0001重新训练并验证,得到如下数据:

train score: 0.9516483516483516; test score: 0.9385964912280702

可以看到,参数设置的不同,对整个结果影响很大

  • 图形化learning curve
import time
from common.utils import plot_learning_curve
from sklearn.model_selection import ShuffleSplitcv = ShuffleSplit(n_splits=10, test_size=0.2, random_state=0)
title = 'Learning Curves for Gaussian Kernel'start = time.clock()
plt.figure(figsize=(10, 4), dpi=144)
plot_learning_curve(plt, SVC(C=1.0, kernel='rbf', gamma=0.01),title, X, y, ylim=(0.5, 1.01), cv=cv)print('elaspe: {0:.6f}'.format(time.clock()-start))
  • 多项式核函数
from sklearn.svm import SVCclf = SVC(C=1.0, kernel='poly', degree=2)
clf.fit(X_train, y_train)
train_score = clf.score(X_train, y_train)
test_score = clf.score(X_test, y_test)
print('train score: {0}; test score: {1}'.format(train_score, test_score))#output:train score: 0.978021978021978; test score: 0.9473684210526315

多项式不同的阶数对分类结果的影响

import time
from common.utils import plot_learning_curve
from sklearn.model_selection import ShuffleSplitcv = ShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
title = 'Learning Curves with degree={0}'
degrees = [1, 2]start = time.clock()
plt.figure(figsize=(12, 4), dpi=144)
for i in range(len(degrees)):plt.subplot(1, len(degrees), i + 1)plot_learning_curve(plt, SVC(C=1.0, kernel='poly', degree=degrees[i]),title.format(degrees[i]), X, y, ylim=(0.8, 1.01), cv=cv, n_jobs=4)print('elaspe: {0:.6f}'.format(time.clock()-start))

 

  • 多项式 LinearSVC
from sklearn.svm import LinearSVC
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import MinMaxScaler
from sklearn.pipeline import Pipelinedef create_model(degree=2, **kwarg):polynomial_features = PolynomialFeatures(degree=degree,include_bias=False)scaler = MinMaxScaler()linear_svc = LinearSVC(**kwarg)pipeline = Pipeline([("polynomial_features", polynomial_features),("scaler", scaler),("linear_svc", linear_svc)])return pipelineclf = create_model(penalty='l1', dual=False)
clf.fit(X_train, y_train)
train_score = clf.score(X_train, y_train)
test_score = clf.score(X_test, y_test)
print('train score: {0}; test score: {1}'.format(train_score, test_score))#output:train score: 0.984615384615; test score: 0.991228070175

show出来learning curve

import time
from common.utils import plot_learning_curve
from sklearn.model_selection import ShuffleSplitcv = ShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
title = 'Learning Curves for LinearSVC with Degree={0}'
degrees = [1, 2]start = time.clock()
plt.figure(figsize=(12, 4), dpi=144)
for i in range(len(degrees)):plt.subplot(1, len(degrees), i + 1)plot_learning_curve(plt, create_model(penalty='l1', dual=False, degree=degrees[i]),title.format(degrees[i]), X, y, ylim=(0.8, 1.01), cv=cv)print('elaspe: {0:.6f}'.format(time.clock()-start))

 

扩展阅读:

如何选择核函数?

如何调整参数?

SVC, linearSVC, NuSVC 都有什么区别?

这篇关于scikit-learn 支持向量机实现乳腺癌检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/782853

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S