C#,布尔可满足性问题(Boolean Satisfiability Problem)算法与源代码

本文主要是介绍C#,布尔可满足性问题(Boolean Satisfiability Problem)算法与源代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 布尔可满足性问题

布尔可满足性问题

布尔可满足性或简单的SAT是确定布尔公式是可满足还是不可满足的问题。


可满足:如果布尔变量可以赋值,使得公式为真,那么我们说公式是可满足的。

不可满足:如果无法指定此类值,则我们称公式不可满足。

2 合取范式(CNF)或也称为和积(POS)

为了更好地理解这一点,首先让我们看看什么是合取范式(CNF)或也称为和积(POS)。

CNF:CNF是子句的连词(AND),其中每个子句都是析取(OR)。

现在,2-SAT将SAT问题限制为仅表示为CNF的布尔公式,每个子句只有2个项(也称为2-CNF)。

示例:F=(A\u 1\vee B\u 1)\wedge(A\u 2\vee B\u 2)\wedge(A\u 3\vee B\u 3)\wedge。。。。。。。\楔块(A\u m\vee B\u m)

因此,2-可满足性问题可以表述为:

给定每个子句只有2个项的CNF,是否可以将这些值分配给变量,以使CNF为真?

3 源代码

using System;
using System.IO;
using System.Collections;
using System.Collections.Generic;namespace Legalsoft.Truffer.Algorithm
{public static class NP_Complete_Problem{private static int MAX { get; set; } = 100000;private static List<List<int>> adj { get; set; }private static List<List<int>> adjInv { get; set; }private static bool[] visited { get; set; } = new bool[MAX];private static bool[] visitedInv { get; set; } = new bool[MAX];private static Stack<int> stack { get; set; } = new Stack<int>();private static int[] scc { get; set; } = new int[MAX];private static int counter { get; set; } = 1;public static void Initialize(int n = 5, int m = 7){for (int i = 0; i < MAX; i++){adj.Add(new List<int>());adjInv.Add(new List<int>());}}private static void Add_Edge(int a, int b){adj[a].Add(b);}private static void Add_Edges_Inverse(int a, int b){adjInv[b].Add(a);}private static void DFS_First(int u){if (visited[u]){return;}visited[u] = true;for (int i = 0; i < adj[u].Count; i++){DFS_First(adj[u][i]);}stack.Push(u);}private static void DFS_Second(int u){if (visitedInv[u]){return;}visitedInv[u] = true;for (int i = 0; i < adjInv[u].Count; i++){DFS_Second(adjInv[u][i]);}scc[u] = counter;}public static bool Is_2_Satisfiable(int n, int m, int[] a, int[] b){for (int i = 0; i < m; i++){if (a[i] > 0 && b[i] > 0){Add_Edge(a[i] + n, b[i]);Add_Edges_Inverse(a[i] + n, b[i]);Add_Edge(b[i] + n, a[i]);Add_Edges_Inverse(b[i] + n, a[i]);}else if (a[i] > 0 && b[i] < 0){Add_Edge(a[i] + n, n - b[i]);Add_Edges_Inverse(a[i] + n, n - b[i]);Add_Edge(-b[i], a[i]);Add_Edges_Inverse(-b[i], a[i]);}else if (a[i] < 0 && b[i] > 0){Add_Edge(-a[i], b[i]);Add_Edges_Inverse(-a[i], b[i]);Add_Edge(b[i] + n, n - a[i]);Add_Edges_Inverse(b[i] + n, n - a[i]);}else{Add_Edge(-a[i], n - b[i]);Add_Edges_Inverse(-a[i], n - b[i]);Add_Edge(-b[i], n - a[i]);Add_Edges_Inverse(-b[i], n - a[i]);}}for (int i = 1; i <= 2 * n; i++){if (!visited[i]){DFS_First(i);}}while (stack.Count != 0){int top = stack.Peek();stack.Pop();if (!visitedInv[top]){DFS_Second(top);counter++;}}for (int i = 1; i <= n; i++){if (scc[i] == scc[i + n]){return false;}}return true;}}
}

POWER BY TRUFFER.CN

4 源程序

using System;
using System.IO;
using System.Collections;
using System.Collections.Generic;

namespace Legalsoft.Truffer.Algorithm
{
    public static class NP_Complete_Problem
    {
        private static int MAX { get; set; } = 100000;
        private static List<List<int>> adj { get; set; }
        private static List<List<int>> adjInv { get; set; }
        private static bool[] visited { get; set; } = new bool[MAX];
        private static bool[] visitedInv { get; set; } = new bool[MAX];
        private static Stack<int> stack { get; set; } = new Stack<int>();
        private static int[] scc { get; set; } = new int[MAX];
        private static int counter { get; set; } = 1;

        public static void Initialize(int n = 5, int m = 7)
        {
            for (int i = 0; i < MAX; i++)
            {
                adj.Add(new List<int>());
                adjInv.Add(new List<int>());
            }
        }

        private static void Add_Edge(int a, int b)
        {
            adj[a].Add(b);
        }

        private static void Add_Edges_Inverse(int a, int b)
        {
            adjInv[b].Add(a);
        }

        private static void DFS_First(int u)
        {
            if (visited[u])
            {
                return;
            }
            visited[u] = true;

            for (int i = 0; i < adj[u].Count; i++)
            {
                DFS_First(adj[u][i]);
            }
            stack.Push(u);
        }

        private static void DFS_Second(int u)
        {
            if (visitedInv[u])
            {
                return;
            }
            visitedInv[u] = true;

            for (int i = 0; i < adjInv[u].Count; i++)
            {
                DFS_Second(adjInv[u][i]);
            }
            scc[u] = counter;
        }

        public static bool Is_2_Satisfiable(int n, int m, int[] a, int[] b)
        {
            for (int i = 0; i < m; i++)
            {
                if (a[i] > 0 && b[i] > 0)
                {
                    Add_Edge(a[i] + n, b[i]);
                    Add_Edges_Inverse(a[i] + n, b[i]);
                    Add_Edge(b[i] + n, a[i]);
                    Add_Edges_Inverse(b[i] + n, a[i]);
                }
                else if (a[i] > 0 && b[i] < 0)
                {
                    Add_Edge(a[i] + n, n - b[i]);
                    Add_Edges_Inverse(a[i] + n, n - b[i]);
                    Add_Edge(-b[i], a[i]);
                    Add_Edges_Inverse(-b[i], a[i]);
                }
                else if (a[i] < 0 && b[i] > 0)
                {
                    Add_Edge(-a[i], b[i]);
                    Add_Edges_Inverse(-a[i], b[i]);
                    Add_Edge(b[i] + n, n - a[i]);
                    Add_Edges_Inverse(b[i] + n, n - a[i]);
                }
                else
                {
                    Add_Edge(-a[i], n - b[i]);
                    Add_Edges_Inverse(-a[i], n - b[i]);
                    Add_Edge(-b[i], n - a[i]);
                    Add_Edges_Inverse(-b[i], n - a[i]);
                }
            }

            for (int i = 1; i <= 2 * n; i++)
            {
                if (!visited[i])
                {
                    DFS_First(i);
                }
            }

            while (stack.Count != 0)
            {
                int top = stack.Peek();
                stack.Pop();

                if (!visitedInv[top])
                {
                    DFS_Second(top);
                    counter++;
                }
            }

            for (int i = 1; i <= n; i++)
            {
                if (scc[i] == scc[i + n])
                {
                    return false;
                }
            }

            return true;
        }
    }
}
 

这篇关于C#,布尔可满足性问题(Boolean Satisfiability Problem)算法与源代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/782796

相关文章

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

C#如何去掉文件夹或文件名非法字符

《C#如何去掉文件夹或文件名非法字符》:本文主要介绍C#如何去掉文件夹或文件名非法字符的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#去掉文件夹或文件名非法字符net类库提供了非法字符的数组这里还有个小窍门总结C#去掉文件夹或文件名非法字符实现有输入字

C#之List集合去重复对象的实现方法

《C#之List集合去重复对象的实现方法》:本文主要介绍C#之List集合去重复对象的实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C# List集合去重复对象方法1、测试数据2、测试数据3、知识点补充总结C# List集合去重复对象方法1、测试数据

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式

《C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式》Markdown凭借简洁的语法、优良的可读性,以及对版本控制系统的高度兼容性,逐渐成为最受欢迎的文档格式... 目录为什么要将文档转换为 Markdown 格式使用工具将 Word 文档转换为 Markdown(.