C#,布尔可满足性问题(Boolean Satisfiability Problem)算法与源代码

本文主要是介绍C#,布尔可满足性问题(Boolean Satisfiability Problem)算法与源代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 布尔可满足性问题

布尔可满足性问题

布尔可满足性或简单的SAT是确定布尔公式是可满足还是不可满足的问题。


可满足:如果布尔变量可以赋值,使得公式为真,那么我们说公式是可满足的。

不可满足:如果无法指定此类值,则我们称公式不可满足。

2 合取范式(CNF)或也称为和积(POS)

为了更好地理解这一点,首先让我们看看什么是合取范式(CNF)或也称为和积(POS)。

CNF:CNF是子句的连词(AND),其中每个子句都是析取(OR)。

现在,2-SAT将SAT问题限制为仅表示为CNF的布尔公式,每个子句只有2个项(也称为2-CNF)。

示例:F=(A\u 1\vee B\u 1)\wedge(A\u 2\vee B\u 2)\wedge(A\u 3\vee B\u 3)\wedge。。。。。。。\楔块(A\u m\vee B\u m)

因此,2-可满足性问题可以表述为:

给定每个子句只有2个项的CNF,是否可以将这些值分配给变量,以使CNF为真?

3 源代码

using System;
using System.IO;
using System.Collections;
using System.Collections.Generic;namespace Legalsoft.Truffer.Algorithm
{public static class NP_Complete_Problem{private static int MAX { get; set; } = 100000;private static List<List<int>> adj { get; set; }private static List<List<int>> adjInv { get; set; }private static bool[] visited { get; set; } = new bool[MAX];private static bool[] visitedInv { get; set; } = new bool[MAX];private static Stack<int> stack { get; set; } = new Stack<int>();private static int[] scc { get; set; } = new int[MAX];private static int counter { get; set; } = 1;public static void Initialize(int n = 5, int m = 7){for (int i = 0; i < MAX; i++){adj.Add(new List<int>());adjInv.Add(new List<int>());}}private static void Add_Edge(int a, int b){adj[a].Add(b);}private static void Add_Edges_Inverse(int a, int b){adjInv[b].Add(a);}private static void DFS_First(int u){if (visited[u]){return;}visited[u] = true;for (int i = 0; i < adj[u].Count; i++){DFS_First(adj[u][i]);}stack.Push(u);}private static void DFS_Second(int u){if (visitedInv[u]){return;}visitedInv[u] = true;for (int i = 0; i < adjInv[u].Count; i++){DFS_Second(adjInv[u][i]);}scc[u] = counter;}public static bool Is_2_Satisfiable(int n, int m, int[] a, int[] b){for (int i = 0; i < m; i++){if (a[i] > 0 && b[i] > 0){Add_Edge(a[i] + n, b[i]);Add_Edges_Inverse(a[i] + n, b[i]);Add_Edge(b[i] + n, a[i]);Add_Edges_Inverse(b[i] + n, a[i]);}else if (a[i] > 0 && b[i] < 0){Add_Edge(a[i] + n, n - b[i]);Add_Edges_Inverse(a[i] + n, n - b[i]);Add_Edge(-b[i], a[i]);Add_Edges_Inverse(-b[i], a[i]);}else if (a[i] < 0 && b[i] > 0){Add_Edge(-a[i], b[i]);Add_Edges_Inverse(-a[i], b[i]);Add_Edge(b[i] + n, n - a[i]);Add_Edges_Inverse(b[i] + n, n - a[i]);}else{Add_Edge(-a[i], n - b[i]);Add_Edges_Inverse(-a[i], n - b[i]);Add_Edge(-b[i], n - a[i]);Add_Edges_Inverse(-b[i], n - a[i]);}}for (int i = 1; i <= 2 * n; i++){if (!visited[i]){DFS_First(i);}}while (stack.Count != 0){int top = stack.Peek();stack.Pop();if (!visitedInv[top]){DFS_Second(top);counter++;}}for (int i = 1; i <= n; i++){if (scc[i] == scc[i + n]){return false;}}return true;}}
}

POWER BY TRUFFER.CN

4 源程序

using System;
using System.IO;
using System.Collections;
using System.Collections.Generic;

namespace Legalsoft.Truffer.Algorithm
{
    public static class NP_Complete_Problem
    {
        private static int MAX { get; set; } = 100000;
        private static List<List<int>> adj { get; set; }
        private static List<List<int>> adjInv { get; set; }
        private static bool[] visited { get; set; } = new bool[MAX];
        private static bool[] visitedInv { get; set; } = new bool[MAX];
        private static Stack<int> stack { get; set; } = new Stack<int>();
        private static int[] scc { get; set; } = new int[MAX];
        private static int counter { get; set; } = 1;

        public static void Initialize(int n = 5, int m = 7)
        {
            for (int i = 0; i < MAX; i++)
            {
                adj.Add(new List<int>());
                adjInv.Add(new List<int>());
            }
        }

        private static void Add_Edge(int a, int b)
        {
            adj[a].Add(b);
        }

        private static void Add_Edges_Inverse(int a, int b)
        {
            adjInv[b].Add(a);
        }

        private static void DFS_First(int u)
        {
            if (visited[u])
            {
                return;
            }
            visited[u] = true;

            for (int i = 0; i < adj[u].Count; i++)
            {
                DFS_First(adj[u][i]);
            }
            stack.Push(u);
        }

        private static void DFS_Second(int u)
        {
            if (visitedInv[u])
            {
                return;
            }
            visitedInv[u] = true;

            for (int i = 0; i < adjInv[u].Count; i++)
            {
                DFS_Second(adjInv[u][i]);
            }
            scc[u] = counter;
        }

        public static bool Is_2_Satisfiable(int n, int m, int[] a, int[] b)
        {
            for (int i = 0; i < m; i++)
            {
                if (a[i] > 0 && b[i] > 0)
                {
                    Add_Edge(a[i] + n, b[i]);
                    Add_Edges_Inverse(a[i] + n, b[i]);
                    Add_Edge(b[i] + n, a[i]);
                    Add_Edges_Inverse(b[i] + n, a[i]);
                }
                else if (a[i] > 0 && b[i] < 0)
                {
                    Add_Edge(a[i] + n, n - b[i]);
                    Add_Edges_Inverse(a[i] + n, n - b[i]);
                    Add_Edge(-b[i], a[i]);
                    Add_Edges_Inverse(-b[i], a[i]);
                }
                else if (a[i] < 0 && b[i] > 0)
                {
                    Add_Edge(-a[i], b[i]);
                    Add_Edges_Inverse(-a[i], b[i]);
                    Add_Edge(b[i] + n, n - a[i]);
                    Add_Edges_Inverse(b[i] + n, n - a[i]);
                }
                else
                {
                    Add_Edge(-a[i], n - b[i]);
                    Add_Edges_Inverse(-a[i], n - b[i]);
                    Add_Edge(-b[i], n - a[i]);
                    Add_Edges_Inverse(-b[i], n - a[i]);
                }
            }

            for (int i = 1; i <= 2 * n; i++)
            {
                if (!visited[i])
                {
                    DFS_First(i);
                }
            }

            while (stack.Count != 0)
            {
                int top = stack.Peek();
                stack.Pop();

                if (!visitedInv[top])
                {
                    DFS_Second(top);
                    counter++;
                }
            }

            for (int i = 1; i <= n; i++)
            {
                if (scc[i] == scc[i + n])
                {
                    return false;
                }
            }

            return true;
        }
    }
}
 

这篇关于C#,布尔可满足性问题(Boolean Satisfiability Problem)算法与源代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/782796

相关文章

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

C#下Newtonsoft.Json的具体使用

《C#下Newtonsoft.Json的具体使用》Newtonsoft.Json是一个非常流行的C#JSON序列化和反序列化库,它可以方便地将C#对象转换为JSON格式,或者将JSON数据解析为C#对... 目录安装 Newtonsoft.json基本用法1. 序列化 C# 对象为 JSON2. 反序列化

C#文件复制异常:"未能找到文件"的解决方案与预防措施

《C#文件复制异常:未能找到文件的解决方案与预防措施》在C#开发中,文件操作是基础中的基础,但有时最基础的File.Copy()方法也会抛出令人困惑的异常,当targetFilePath设置为D:2... 目录一个看似简单的文件操作问题问题重现与错误分析错误代码示例错误信息根本原因分析全面解决方案1. 确保

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据