【DPDK】基于dpdk实现用户态UDP网络协议栈

2024-03-07 03:20

本文主要是介绍【DPDK】基于dpdk实现用户态UDP网络协议栈,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一.背景及导言
  • 二.协议栈架构设计
    • 1. 数据包接收和发送引擎
    • 2. 协议解析
    • 3. 数据包处理逻辑
  • 三.网络函数编写
    • 1.socket
    • 2.bind
    • 3.recvfrom
    • 4.sendto
    • 5.close
  • 四.总结

一.背景及导言

在当今数字化的世界中,网络通信的高性能和低延迟对于许多应用至关重要。而用户态网络协议栈通过摆脱传统内核态协议栈的限制,为实现更快速、灵活的数据包处理提供了新的可能性。本文将深入探讨基于DPDK的用户态UDP网络协议栈的设计、实现。

传统的内核态协议栈在处理网络通信时通常伴随着较大的性能开销,而用户态网络协议栈的崛起为高性能应用带来了全新的解决方案。DPDK,作为一款用于高性能数据平面应用的工具包,为用户态网络协议栈的实现提供了强大的支持。通过将网络协议栈移植到用户态,我们可以更灵活地优化数据包处理、提高吞吐量,并有效降低处理延迟。

二.协议栈架构设计

网络协议栈整体大致架构如下图所示:
在这里插入图片描述

1. 数据包接收和发送引擎

数据包接收和发送引擎负责从网络接口接收数据包,并将数据包发送到目标地址。通过DPDK提供的高性能数据包I/O接口,实现对多队列的支持,以提高并行性和吞吐量。

从网卡接收原始数据放入in_ring:
rte_eth_rx_burst();
out_ring中取出数据通过网卡发送:
rte_eth_tx_burst();

while(1) {// rxstruct rte_mbuf *rx[BURST_SIZE];// 内存池//接收unsigned num_recvd = rte_eth_rx_burst(gDpdkPortId, 0, rx, BURST_SIZE);if(num_recvd > BURST_SIZE) {rte_exit(EXIT_FAILURE, "Error receiving from eth\n");} else if(num_recvd > 0) {//入队列rte_ring_sp_enqueue_burst(ring->in, (void**)rx, num_recvd, NULL);}// txstruct rte_mbuf *tx[BURST_SIZE];//出队列unsigned nb_tx = rte_ring_sc_dequeue_burst(ring->out, (void**)tx, BURST_SIZE,NULL);if(nb_tx > 0) {//发送rte_eth_tx_burst(gDpdkPortId, 0, tx, nb_tx);unsigned i = 0;for(;i < nb_tx; i++) {rte_pktmbuf_free(tx[i]);}}static uint64_t prev_tsc = 0, cur_tsc;uint64_t diff_tsc;cur_tsc = rte_rdtsc();diff_tsc = cur_tsc - prev_tsc;if(diff_tsc > TIMER_RESOLUTION_CYCLES) {rte_timer_manage();prev_tsc = cur_tsc;}}

2. 协议解析

协议解析模块负责对接收到的UDP数据包进行解析,提取出源和目标端口号、校验和等关键信息。采用高效的解析算法,确保对数据包的处理不成为性能瓶颈。
从原始数据包中解析以太网头:

struct rte_ether_hdr *ehdr = rte_pktmbuf_mtod(mbufs[i],struct rte_ether_hdr*);

从原始数据包中(偏移以太网头)解析arp头:

struct rte_arp_hdr *ahdr = rte_pktmbuf_mtod_offset(mbufs[i],struct rte_arp_hdr *,sizeof(struct rte_ether_hdr));

从原始数据包中解析IP头:

struct rte_ipv4_hdr *iphdr = rte_pktmbuf_mtod_offset(mbufs[i], struct rte_ipv4_hdr *, sizeof(struct rte_ether_hdr));

通过IP头中的网络类型协议可以得知该数据包是UDP,TCP或ICMP包,通过类型强制转换可以得到相对应的数据包协议头。
通过IP头偏移1位强转可得到UDP/TCP头:

struct rte_udp_hdr *udphdr = (struct rte_udp_hdr *)(iphdr + 1);

通过IP头偏移1位强转可得到ICMP头:

struct rte_icmp_hdr *icmphdr = (struct rte_icmp_hdr *)(iphdr + 1);

不同的数据包调用不同的函数处理,通过对数据包的解析可以得到我们想要的IP地址,端口号,以太网地址,数据等。

3. 数据包处理逻辑

数据包处理逻辑包括各种应用层的逻辑,如数据包过滤、路由决策等。这一部分需要具体根据应用场景进行定制,以满足不同需求。
当用户接收并处理完数据包后得到新的用户数据需要发送,此时我们只需要逆向操作接收数据包的过程即可。
一个UDP数据帧组成结构如图所示,在用户数据上添加UDP头,在此基础上再添加IP头,最后再添加以太网头,一个UDP数据帧就组装完毕,就可直接通过网卡发送。
在这里插入图片描述
按UDP数据帧结构从用户数据从上往下依次组包。
在这里插入图片描述
!](https://img-blog.csdnimg.cn/direct/ede89757233f4dca8eff2eec63826075.png)

//1 etherstruct rte_ether_hdr *eth = (struct rte_ether_hdr*)msg;rte_memcpy(eth->s_addr.addr_bytes, src_mac, RTE_ETHER_ADDR_LEN);//源Mac地址rte_memcpy(eth->d_addr.addr_bytes, dst_mac, RTE_ETHER_ADDR_LEN);//目的Mac地址eth->ether_type = htons(RTE_ETHER_TYPE_IPV4);//类型

在这里插入图片描述

//2 iphdrstruct rte_ipv4_hdr *ip = (struct rte_ipv4_hdr*)(msg + sizeof(struct rte_ether_hdr));ip->version_ihl = 0x45; //4位版本,4位首部长度ip->type_of_service = 0;//服务类型ip->total_length = htons(length - sizeof(struct rte_ether_hdr));//总长度ip->packet_id = 0;//16位标识ip->fragment_offset = 0;//偏移ip->time_to_live = 64; //TTLip->next_proto_id = IPPROTO_UDP;//8位协议ip->src_addr = sip;ip->dst_addr = dip;ip->hdr_checksum = 0;ip->hdr_checksum = rte_ipv4_cksum(ip);//首部校验和

UDP协议

//3 udpstruct rte_udp_hdr *udp = (struct rte_udp_hdr*)(msg + sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr));udp->src_port = sport;//源端口udp->dst_port = dport;//目的端口uint16_t udplen = length - sizeof(struct rte_ether_hdr) - sizeof(struct rte_ipv4_hdr);udp->dgram_len = htons(udplen);//长度rte_memcpy((uint8_t*)(udp + 1), data, udplen);udp->dgram_cksum = 0;udp->dgram_cksum = rte_ipv4_udptcp_cksum(ip, udp);//校验和

所有数据包都有以太网头,IP头arp头为第二层,TCP UDP ICMP为第三次,数据组包的时候只需根据需求选择不同的协议填空即可。

三.网络函数编写

定义主机,包括:唯一标识符,IP地址,Mac地址,协议,recvbuf,senfbuf,互斥锁,条件变量,链表结构。

struct localhost {int fd;uint32_t localip;uint8_t localmac[RTE_ETHER_ADDR_LEN];uint16_t localport;uint8_t protocol;struct rte_ring *recvbuf;struct rte_ring *sendbuf;struct localhost *prev;struct localhost *next;pthread_cond_t cond;pthread_mutex_t mutex;
};static struct localhost *lhost = NULL;

使用Hook自定义网络编程函数,或自定义网络函数名。

1.socket

static int 
socket(__attribute__((unused))int domain, int type, __attribute__((unused))int protocol) {int fd = get_fd_frombitmap();struct localhost *host = rte_malloc("localhost", sizeof(struct localhost), 0);if(host == NULL) {return -1;}memset(host, 0, sizeof(struct localhost));host->fd = fd;if(type == SOCK_DGRAM) {host->protocol = IPPROTO_UDP;} host->recvbuf =  rte_ring_create("recv buf",RING_SIZE,rte_socket_id(),RING_F_SP_ENQ | RING_F_SC_DEQ);if(host->recvbuf == NULL) {rte_free(host);return -1;}host->sendbuf =  rte_ring_create("send buf",RING_SIZE,rte_socket_id(),RING_F_SP_ENQ | RING_F_SC_DEQ);if(host->sendbuf == NULL) {rte_ring_free(host->recvbuf);rte_free(host);return -1;}pthread_cond_t blank_cond = PTHREAD_COND_INITIALIZER;rte_memcpy(&host->cond, &blank_cond, sizeof(pthread_cond_t));pthread_mutex_t blank_mutex = PTHREAD_MUTEX_INITIALIZER;rte_memcpy(&host->mutex, &blank_mutex, sizeof(pthread_mutex_t));LL_ADD(host, lhost);return fd;
}

2.bind

static int bind(int sockfd, const struct sockaddr *addr,__attribute__((unused))socklen_t addrlen) {struct localhost *host = get_hostinfo_fromfd(sockfd);if(host == NULL) {return -1;}const struct sockaddr_in *laddr = (const struct sockaddr_in*)addr;host->localport = laddr->sin_port;rte_memcpy(&host->localip, &laddr->sin_addr.s_addr, sizeof(uint32_t));rte_memcpy(host->localmac, gSrcMac, RTE_ETHER_ADDR_LEN);return 0;
}

3.recvfrom

static ssize_t recvfrom(int sockfd, void *buf, size_t len, __attribute__((unused))int flags,struct sockaddr *src_addr, __attribute__((unused))socklen_t *addrlen){struct localhost *host = get_hostinfo_fromfd(sockfd);if(host == NULL) return -1;struct sockaddr_in *saddr = (struct sockaddr_in*)src_addr;//dequeuestruct offload *ol = NULL;unsigned char *ptr = NULL;int nb = -1;//阻塞pthread_mutex_lock(&host->mutex);while((nb = rte_ring_mc_dequeue(host->recvbuf,(void**)&ol)) < 0) {pthread_cond_wait(&host->cond, &host->mutex);}pthread_mutex_unlock(&host->mutex);saddr->sin_port = ol->sport;rte_memcpy(&saddr->sin_addr.s_addr, &ol->sip, sizeof(uint32_t));struct in_addr addr;addr.s_addr = ol->dip;printf("nrecvto ---> src: %s:%d \n", inet_ntoa(addr), ntohs(ol->dport));if(len < ol->length) { //一次无法接收全部数据rte_memcpy(buf, ol->data, len);ptr = rte_malloc("unsigned char *", ol->length - len, 0);rte_memcpy(ptr, ol->data + len, ol->length - len);ol->length -= len;rte_free(ol->data);ol->data = ptr;rte_ring_mp_enqueue(host->recvbuf, ol);return len;} else {rte_memcpy(buf, ol->data, ol->length);rte_free(ol->data);rte_free(ol);return ol->length;}
}

4.sendto

static ssize_t sendto(int sockfd, const void *buf, size_t len, __attribute__((unused))int flags,const struct sockaddr *dest_addr, __attribute__((unused))socklen_t addrlen){struct localhost *host = get_hostinfo_fromfd(sockfd);if(host == NULL) return -1;const struct sockaddr_in *daddr = (const struct sockaddr_in*)dest_addr;struct offload *ol = rte_malloc("offload", sizeof(struct offload), 0);if(ol == NULL) {return -1;}ol->dip = daddr->sin_addr.s_addr;ol->dport = daddr->sin_port;ol->sip = host->localip;ol->sport = host->localport;ol->length = len;struct in_addr addr;addr.s_addr = ol->dip;printf("nsendto ---> src: %s:%d \n", inet_ntoa(addr), ntohs(ol->dport));ol->data = rte_malloc("ol data", len, 0);if(ol->data == NULL) {rte_free(ol);return -1;}rte_memcpy(ol->data, buf, len);rte_ring_mp_enqueue(host->sendbuf, ol);return len;   
}

5.close

static int nclose(int fd) {struct localhost *host = get_hostinfo_fromfd(fd);if(host == NULL) {return -1;}LL_REMOVE(host, lhost);if(host->recvbuf){rte_ring_free(host->recvbuf);}if(host->sendbuf){rte_ring_free(host->sendbuf);}rte_free(host);return 0;
}

四.总结

通过本文,我们深入研究了基于DPDK的用户态UDP网络协议栈的设计、实现。在整体设计思路上,我们采用了用户态网络协议栈的理念,通过将核心功能移至用户空间,结合DPDK的强大支持,实现了一个高性能、低延迟的数据包处理方案。

关键组成部分中,我们详细介绍了数据包接收和发送引擎、协议解析、数据包处理逻辑等模块。这些组成部分共同协作,使得用户态UDP网络协议栈能够在不同应用场景下发挥其优势。

整体架构图清晰展示了各个模块之间的关系,以及数据在协议栈中的流动路径。这有助于读者更好地理解我们设计的用户态UDP网络协议栈的整体结构。

通过对用户态UDP网络协议栈的研究,我们不仅深刻理解了其设计和实现,也为构建更高性能、更灵活的网络通信系统奠定了基础。未来,我们期待在这一基础上进一步优化和扩展,以满足不断发展的网络应用需求。

链接: 基于DPDK实现的UDP用户态网络协议栈完整代码

这篇关于【DPDK】基于dpdk实现用户态UDP网络协议栈的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/782248

相关文章

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

最新Spring Security的基于内存用户认证方式

《最新SpringSecurity的基于内存用户认证方式》本文讲解SpringSecurity内存认证配置,适用于开发、测试等场景,通过代码创建用户及权限管理,支持密码加密,虽简单但不持久化,生产环... 目录1. 前言2. 因何选择内存认证?3. 基础配置实战❶ 创建Spring Security配置文件

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

Python实现PDF按页分割的技术指南

《Python实现PDF按页分割的技术指南》PDF文件处理是日常工作中的常见需求,特别是当我们需要将大型PDF文档拆分为多个部分时,下面我们就来看看如何使用Python创建一个灵活的PDF分割工具吧... 目录需求分析技术方案工具选择安装依赖完整代码实现使用说明基本用法示例命令输出示例技术亮点实际应用场景扩