Offer必备算法11_斐波那契dp_四道力扣题详解(由易到难)

本文主要是介绍Offer必备算法11_斐波那契dp_四道力扣题详解(由易到难),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

动态规划dp算法原理

①力扣1137. 第 N 个泰波那契数

解析代码1

解析代码2

②力扣面试题 08.01. 三步问题

解析代码

③力扣746. 使用最小花费爬楼梯

解析代码1

解析代码2

④力扣91. 解码方法

解析代码1

解析代码2

本篇完。


动态规划dp算法原理

        动态规划(Dynamic Programming)算法的核心思想是:将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法

        动态规划算法与分治算法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。

        与分治法不同的是,适合于用动态规划求解的问题,经分解得到的子问题往往不是互相独立的(即下一个子阶段的求解是建立在上一个子阶段的解的基础上)。

(除此斐波那契dp外还有其它类型的dp在后面会更新。)

动态规划算法解决问题的分类:

计数

有多少种方式走到右下角 / 有多少种方法选出k个数使得和是sum

求最大值/最小值

从左上角走到右下角路径的最大数字和最长上升子序列长度

求存在性

取石子游戏,先手是否必胜 / 能不能取出k  个数字使得和是 sum

动态规划dp算法一般步骤:

  1. 确定状态表示(dp[ i ] 表示什么,一般以 i 位置为起点或结尾分析,化成子问题)
  2. 状态转移方程(斐波那契数列的状态转移方程为:dp[i] = dp[i-1] + dp[i-2])
  3. 初始化(斐波那契数列初始化可以为dp[0] = 0, dp[1] = 1;)
  4. 填表顺序(斐波那契数列从左往右填)
  5. 返回值(如果斐波那契数列要求是第 n 个斐波那契数,返回dp[ n ] 即可)

①力扣1137. 第 N 个泰波那契数

1137. 第 N 个泰波那契数

 难度 简单

泰波那契序列 Tn 定义如下: 

T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2

给你整数 n,请返回第 n 个泰波那契数 Tn 的值。

示例 1:

输入:n = 4
输出:4
解释:
T_3 = 0 + 1 + 1 = 2
T_4 = 1 + 1 + 2 = 4

示例 2:

输入:n = 25
输出:1389537

提示:

  • 0 <= n <= 37
  • 答案保证是一个 32 位整数,即 answer <= 2^31 - 1
class Solution {
public:int tribonacci(int n) {}
};

解析代码1

简单的DP,根据题目已经得到状态转移方程了:

class Solution {
public:int tribonacci(int n) {if(n <= 1) // 处理边界return n;vector<int> dp(n+1, 0);dp[1] = dp[2] = 1;for(int i = 3; i <= n; ++i){dp[i] = dp[i-1] + dp[i-2] + dp[i-3];}return dp[n];}
};

解析代码2

        滚动数组对解法1进行空间上的优化,后面类似的空间优化就不写了,因为笔试没用,面试能讲出来就行。

class Solution {
public:int tribonacci(int n) {if(n <= 1) // 处理边界return n;int a = 0, b = 1, c = 1, d = 1; // 滚动数组思想优化空间for(int i = 3; i <= n; ++i){d = a + b + c;a = b;b = c;c = d;}return d;}
};

②力扣面试题 08.01. 三步问题

面试题 08.01. 三步问题

难度 简单

三步问题。有个小孩正在上楼梯,楼梯有n阶台阶,小孩一次可以上1阶、2阶或3阶。实现一种方法,计算小孩有多少种上楼梯的方式。结果可能很大,你需要对结果模1000000007。

示例1:

 输入:n = 3 
 输出:4
 说明: 有四种走法

示例2:

 输入:n = 5
 输出:13

提示:

  1. n范围在[1, 1000000]之间
class Solution {
public:int waysToStep(int n) {}
};

解析代码

和上一题力扣1137. 第 N 个泰波那契数状态转移方程一样,就是要注意数据溢出。

class Solution {
public:int waysToStep(int n) {const int MOD = 1e9 + 7;if(n <= 2) // 处理边界return n;vector<int> dp(n+1, 1);dp[2] = 2;dp[3] = 4;for(int i = 4; i <= n; ++i){dp[i] = ((dp[i-1] + dp[i-2]) % MOD + dp[i-3]) % MOD;}return dp[n];}
};

③力扣746. 使用最小花费爬楼梯

746. 使用最小花费爬楼梯

难度 简单

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

示例 1:

输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。

示例 2:

输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。
- 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
- 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
- 支付 1 ,向上爬一个台阶,到达楼梯顶部。
总花费为 6 。

提示:

  • 2 <= cost.length <= 1000
  • 0 <= cost[i] <= 999
class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {}
};

解析代码1

如果dp[ i ]表示到达i位置的最小花费,则到达dp[ i ] 就有以下两种情况:

  • 先到达dp[ i-1 ] 然后 支付cost[ i-1] 到达 dp[ i ]。
  • 先到达dp[ i-2 ] 然后 支付cost[ i-2] 到达 dp[ i ]。

题意及取两种情况小的那个,得到状态转移方程:dp[i] =min(dp[i-1] + cost[i-1], dp[i-2] + cost[i-2]);

class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {int n = cost.size();vector<int> dp(n + 1, 0); // dp[i]表示到达i位置的最小花费for(int i = 2; i <= n; ++i){dp[i] = min(dp[i-1] + cost[i-1], dp[i-2] + cost[i-2]);}return dp[n]; // 楼顶是原数组最后位置的下一个}
};

解析代码2

如果dp[ i ]表示从 i 位置出发,到达楼顶,此时的最小花费,则dp[ i ] 就有以下两种情况:

  • 支付 cost[ i ],往后走一步,从 i + 1的位置出发到终点
  • 支付 cost[ i ],往后走两步,从 i + 2的位置出发到终点

则需要知道 i + 1 和 i + 2 位置的最小花费,及dp [i + 1] 和 dp[i + 2]。所以要从右往左填

则状态转移方程为:dp[i] = min(dp[i+1] + cost[i], dp[i+2] + cost[i]);

class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {int n = cost.size();vector<int> dp(n, 0); // dp[i]表示到达i位置的最小花费dp[n-1] = cost[n-1];dp[n-2] = cost[n-2];for(int i = n-3; i >= 0; --i){dp[i] = min(dp[i+1] + cost[i], dp[i+2] + cost[i]);}return min(dp[0], dp[1]);}
};

④力扣91. 解码方法

91. 解码方法

难度 中等

一条包含字母 A-Z 的消息通过以下映射进行了 编码 :

'A' -> "1"
'B' -> "2"
...
'Z' -> "26"

要 解码 已编码的消息,所有数字必须基于上述映射的方法,反向映射回字母(可能有多种方法)。例如,"11106" 可以映射为:

  • "AAJF" ,将消息分组为 (1 1 10 6)
  • "KJF" ,将消息分组为 (11 10 6)

注意,消息不能分组为  (1 11 06) ,因为 "06" 不能映射为 "F" ,这是由于 "6" 和 "06" 在映射中并不等价。

给你一个只含数字的 非空 字符串 s ,请计算并返回 解码 方法的 总数 。

题目数据保证答案肯定是一个 32 位 的整数。

示例 1:

输入:s = "12"
输出:2
解释:它可以解码为 "AB"(1 2)或者 "L"(12)。

示例 2:

输入:s = "226"
输出:3
解释:它可以解码为 "BZ" (2 26), "VF" (22 6), 或者 "BBF" (2 2 6) 。

示例 3:

输入:s = "06"
输出:0
解释:"06" 无法映射到 "F" ,因为存在前导零("6" 和 "06" 并不等价)。

提示:

  • 1 <= s.length <= 100
  • s 只包含数字,并且可能包含前导零。
class Solution {
public:int numDecodings(string s) {}
};

解析代码1

dp[i]表示字符串中区间,总编码方法

关于 i 位置的编码状况,可以分为下面两种情况:

  • 让 i 位置上的数单独解码成一个字母
  • 让 i 位置上的数与 i - 1 位置上的数结合,解码成一个字母

让 i 位置上的数单独解码成一个字母,就存在 解码成功 解码失败 两种情况:

  • 解码成功:dp[i] = dp[i - 1];([0,i] 上所有解码结果后面填上一个字母即可) 
  • 解码失败:dp[i] = 0;(前面努力都白费)

让 i 位置上的数与 i - 1 位置上的数结合在⼀起,解码成一个字母,也存在 解码成功 解码失败 两种情况:

  • 解码成功:dp[i] = dp[i - 2];    原因同上。
  • 解码失败:dp[i] = 0;(前面努力都白费)
class Solution {
public:int numDecodings(string s) {int n = s.size();vector<int> dp(n, 0); // dp[i]表示字符串中[0,i]区间,总编码方法dp[0] = (s[0] != '0'); // 题目只有0-9,不等于0就能单独编码if(n == 1)return dp[0];if(s[0] != '0' && s[1] != '0') // 两个都能单独编码dp[1] += 1;int y = (s[0] -'0') * 10 + (s[1] - '0');if(y >= 10 && y <= 26) // 和在一起能编码,不含前导0dp[1] += 1;for(int i = 2; i < n; ++i){if(s[i] != '0') // 能单独编码dp[i] += dp[i-1];y = (s[i-1] -'0') * 10 + (s[i] - '0');if(y >= 10 && y <= 26) // 和在一起能编码,不含前导0dp[i] += dp[i-2];}return dp[n-1];}
};

解析代码2

解析代码1是直接初始化,有点麻烦,在其基础上可以添加辅助位置初始化,注意两个点:

  • 辅助结点里面的值要保证后续填表是正确的
  • 下标的映射关系(此题下标有的要减1)
class Solution {
public:int numDecodings(string s) {int n = s.size();vector<int> dp(n+1, 0); // 辅助结点简化dp[0] = 1;dp[1] = (s[0] != '0');for(int i = 2; i <= n; ++i){if(s[i-1] != '0') // 能单独编码dp[i] += dp[i-1];int y = (s[i-2] -'0') * 10 + (s[i-1] - '0');if(y >= 10 && y <= 26) // 和在一起能编码,不含前导0dp[i] += dp[i-2];}return dp[n];}
};

本篇完。

下一篇是链表的OJ,下下篇是动态规划的另一种类型:路径dp。

这篇关于Offer必备算法11_斐波那契dp_四道力扣题详解(由易到难)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/782210

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

SpringBoot日志级别与日志分组详解

《SpringBoot日志级别与日志分组详解》文章介绍了日志级别(ALL至OFF)及其作用,说明SpringBoot默认日志级别为INFO,可通过application.properties调整全局或... 目录日志级别1、级别内容2、调整日志级别调整默认日志级别调整指定类的日志级别项目开发过程中,利用日志

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MySQL8 密码强度评估与配置详解

《MySQL8密码强度评估与配置详解》MySQL8默认启用密码强度插件,实施MEDIUM策略(长度8、含数字/字母/特殊字符),支持动态调整与配置文件设置,推荐使用STRONG策略并定期更新密码以提... 目录一、mysql 8 密码强度评估机制1.核心插件:validate_password2.密码策略级

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar