C语言结构体的大小,结构体内存对齐

2024-03-07 01:36

本文主要是介绍C语言结构体的大小,结构体内存对齐,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 结构体的大小

在自己正真了解过之前,一直认为结构体的大小就是结构体内部成员大小的总和。

但当你去尝试打印结构体的大小时,会发现事实并非如此,也不会像你想的那样简单。

#include <stdio.h>struct S1
{char c1;char c2;int i;
};struct S2
{char c1;int i;char c2;
};int main()
{printf("%d\n", sizeof(struct S1));printf("%d\n", sizeof(struct S2));return 0;
}

给出这样的两个结构体,它们的元素完全相同,只是定义的顺序不一样。

按照直觉来说,它们的大小都应该是两个字符和一个整形的大小的总和,也就是6。

但是当我们实际打印出来之后会发现,struct S1的大小是8,而struct S2的大小是12。

也就是说,结构体的大小肯定不只是由其成员的大小和数量决定,至少还会与其成员定义的顺序有关。

那么,结构体的大小到底存在着什么样的机制呢?

这个所谓的机制,就是结构体内存对齐。

2. 结构体内存对齐

结构体内存对齐,就是指结构体成员在被定义时所分配到的空间并不是连续的,而是会基于不同变量对齐数的不同,去对应某些固定的位置的空间。

2.1 为什么要对齐

按理来说,对齐应该会导致元素因为没有紧密排列而造成空间的浪费,那么为什么要对齐呢?

2.1.1 平台原因

不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。

2.1.2 性能原因

数据结构(尤其是栈)应该尽可能地在自然然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要⼀次访问。假设⼀个处理器总是从内存中取4个字节,则地址必须是4的倍数。如果我们能保证将所有的int类型的数据的地址都对齐成4的倍数(相对于结构体首个字节的地址来说),那么就可以用⼀个内存操作来读或者写值了。否则,我们可能需要执行两次内存访问,因为对象可能被分放在两个4字节内存块中。

以struct S2为例:

struct S2
{char c1;int i;char c2;
};

总体来说:结构体的内存对齐是拿空间来换取时间的做法。

2.2 对齐规则

1. 结构体的第⼀个成员对齐到和结构体变量起始位置偏移量(相距的字节数)为0的地址处。

2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。

对齐数 = 编译器默认的⼀个对齐数 与 该成员变量大小的较小值。

- VS 中默认的值为 8

- Linux中 gcc 没有默认对齐数,对齐数就是成员自身的大小

3. 结构体总大小为最大对齐数(结构体中每个成员变量都有⼀个对齐数,所有对齐数中最大的)的整数倍。

4. 如果嵌套了结构体的情况,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体中成员的对齐数)的整数倍。

2.3 举例

2.3.1 struct S1

struct S1
{char c1;char c2;int i;
};

1. c1作为第一个成员,在结构体的首地址处;

2. c2对齐数为1,所以紧贴着上一个元素;

3. i对齐数为4,由于前四格空间已经被占用,所以i向后寻找到的第一个为4的倍数的地址如图;

4. 最大对齐数为4,而8刚好是4的倍数,于是结构体大小为4。

2.3.2 struct S2

struct S2
{char c1;int i;char c2;
};

1. c1作为第一个成员,在结构体的首地址处;

2.  i对齐数为4,由于前四格空间已经被占用,所以i向后寻找到的第一个为4的倍数的地址如图;

3. c2对齐数为1,紧贴着前面一个元素;

4. 最大对齐数为4,目前结构体已经占用了9个字节,由于结构体的大小需要是4的倍数,所以其大小只能为12了。

2.3.3 其他

struct S3//16
{double d;char c;int i;
};struct S4//32
{char c1;struct S3 s3;double d;
};

这两个案例可以自己尝试一下,要自己动手才能记得牢,不是我懒得写。

2.4 修改默认对齐数

用“#pragma()”这个预处理指令,可以修改默认对齐数。

#pragma pack(4)//默认对齐数改为4
#pragma pack()//恢复默认对齐数
#pragma pack(1)//等价于不对齐

这篇关于C语言结构体的大小,结构体内存对齐的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/782034

相关文章

C语言中%zu的用法解读

《C语言中%zu的用法解读》size_t是无符号整数类型,用于表示对象大小或内存操作结果,%zu是C99标准中专为size_t设计的printf占位符,避免因类型不匹配导致错误,使用%u或%d可能引发... 目录size_t 类型与 %zu 占位符%zu 的用途替代占位符的风险兼容性说明其他相关占位符验证示

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

Go语言编译环境设置教程

《Go语言编译环境设置教程》Go语言支持高并发(goroutine)、自动垃圾回收,编译为跨平台二进制文件,云原生兼容且社区活跃,开发便捷,内置测试与vet工具辅助检测错误,依赖模块化管理,提升开发效... 目录Go语言优势下载 Go  配置编译环境配置 GOPROXYIDE 设置(VS Code)一些基本

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

Go语言中make和new的区别及说明

《Go语言中make和new的区别及说明》:本文主要介绍Go语言中make和new的区别及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 概述2 new 函数2.1 功能2.2 语法2.3 初始化案例3 make 函数3.1 功能3.2 语法3.3 初始化

Go语言中nil判断的注意事项(最新推荐)

《Go语言中nil判断的注意事项(最新推荐)》本文给大家介绍Go语言中nil判断的注意事项,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.接口变量的特殊行为2.nil的合法类型3.nil值的实用行为4.自定义类型与nil5.反射判断nil6.函数返回的

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)