9.12零钱兑换(LC518-M)(开始完全背包,与01背包的不同仅在于遍历顺序)

2024-03-07 00:44

本文主要是介绍9.12零钱兑换(LC518-M)(开始完全背包,与01背包的不同仅在于遍历顺序),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法:

这是一道典型的背包问题,一看到钱币数量不限,就知道这是一个完全背包。

但本题和纯完全背包不一样,纯完全背包是凑成背包最大价值是多少,而本题是要求凑成总金额的物品组合个数!

动规五步曲:

1.确定dp数组以及下标:

dp[j]:凑成总金额j的货币组合数为dp[j]

2.确定dp公式

dp[j] 就是所有的dp[j - coins[i]](考虑coins[i]的情况)相加。

dp[j] += dp[j - coins[i]];

求装满背包有几种方法,公式都是:dp[j] += dp[j - nums[i]];

3.dp数组初始化

组合-累加-dp[0]=1,一定不能为0

首先dp[0]一定要为1,dp[0] = 1是 递归公式的基础。如果dp[0] = 0 的话,后面所有推导出来的值都是0了。

下标非0的dp[j]初始化为0,这样累计加dp[j - coins[i]]的时候才不会影响真正的dp[j]

4.确定遍历顺序

对于普通的完全背包问题:完全背包的两个for循环的先后顺序都是可以的。

但本题就不行了!

因为纯完全背包求得装满背包的最大价值是多少,和凑成总和的元素有没有顺序没关系,即:有顺序也行,没有顺序也行!

本题要求凑成总和的组合数,元素之间明确要求没有顺序。

本题是求凑出来的方案个数,且每个方案个数是为组合数。

那么本题,两个for循环的先后顺序可就有说法了。

我们先来看 外层for循环遍历物品(钱币),内层for遍历背包(金钱总额)的情况。

假设:coins[0] = 1,coins[1] = 5。

for (int i = 0; i < coins.size(); i++) { // 遍历物品for (int j = coins[i]; j <= amount; j++) { // 遍历背包容量dp[j] += dp[j - coins[i]];}
}

那么就是先把1加入计算,然后再把5加入计算,得到的方法数量只有{1, 5}这种情况。而不会出现{5, 1}的情况。

所以这种遍历顺序中dp[j]里计算的是组合数!

如果把两个for交换顺序,代码如下:

for (int j = 0; j <= amount; j++) { // 遍历背包容量for (int i = 0; i < coins.size(); i++) { // 遍历物品if (j - coins[i] >= 0) dp[j] += dp[j - coins[i]];}
}

背包容量的每一个值,都是经过 1 和 5 的计算,包含了{1, 5} 和 {5, 1}两种情况。

此时dp[j]里算出来的就是排列数!

5.举例推导dp数组

coins.size=3,amount=5

i=0:

j=coins[0]=1;j<=5;j++{

  • j=1:dp[1]=dp[1-1]+dp[1]=0+1=1
  • j=2:dp[2]=dp[1]+dp[2]=1+0=1
  • j=5 dp[5]=dp[4]+dp[5]=1+0=1}

i=1:

j=coins[1]=2;j<=5;j++{

j=2:dp[2]=dp[2]+dp[2-2]=1+1=2

j=3:dp[3]=dp[3]+dp[1]=1+1=2

。。。。}

正确代码:

class Solution {public int change(int amount, int[] coins) {int[] dp = new int [amount+1];dp[0] = 1;//其他dp值(除了0以外的),dp[i]=0for(int i=0; i<coins.length; i++){for(int j=coins[i]; j<=amount; j++){dp[j] += dp[j-coins[i]];}}return dp[amount];}
}

注意:

dp[0]=1,dp[i]=0(i !=0)

//初始化dp数组,表示金额为0时只有一种情况,也就是什么都不装dp[0] = 1;

时间空间复杂度:

  • 时间复杂度: O(mn),其中 m 是amount,n 是 coins 的长度
  • 空间复杂度: O(m)

这篇关于9.12零钱兑换(LC518-M)(开始完全背包,与01背包的不同仅在于遍历顺序)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/781901

相关文章

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co

python进行while遍历的常见错误解析

《python进行while遍历的常见错误解析》在Python中选择合适的遍历方式需要综合考虑可读性、性能和具体需求,本文就来和大家讲解一下python中while遍历常见错误以及所有遍历方法的优缺点... 目录一、超出数组范围问题分析错误复现解决方法关键区别二、continue使用问题分析正确写法关键点三

Python使用Reflex构建现代Web应用的完全指南

《Python使用Reflex构建现代Web应用的完全指南》这篇文章为大家深入介绍了Reflex框架的设计理念,技术特性,项目结构,核心API,实际开发流程以及与其他框架的对比和部署建议,感兴趣的小伙... 目录什么是 ReFlex?为什么选择 Reflex?安装与环境配置构建你的第一个应用核心概念解析组件

Python日期和时间完全指南与实战

《Python日期和时间完全指南与实战》在软件开发领域,‌日期时间处理‌是贯穿系统设计全生命周期的重要基础能力,本文将深入解析Python日期时间的‌七大核心模块‌,通过‌企业级代码案例‌揭示最佳实践... 目录一、背景与核心价值二、核心模块详解与实战2.1 datetime模块四剑客2.2 时区处理黄金法

MySQL中SQL的执行顺序详解

《MySQL中SQL的执行顺序详解》:本文主要介绍MySQL中SQL的执行顺序,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql中SQL的执行顺序SQL执行顺序MySQL的执行顺序SELECT语句定义SELECT语句执行顺序总结MySQL中SQL的执行顺序

Android NDK版本迭代与FFmpeg交叉编译完全指南

《AndroidNDK版本迭代与FFmpeg交叉编译完全指南》在Android开发中,使用NDK进行原生代码开发是一项常见需求,特别是当我们需要集成FFmpeg这样的多媒体处理库时,本文将深入分析A... 目录一、android NDK版本迭代分界线二、FFmpeg交叉编译关键注意事项三、完整编译脚本示例四

Java遍历HashMap的6种常见方式

《Java遍历HashMap的6种常见方式》这篇文章主要给大家介绍了关于Java遍历HashMap的6种常见方式,方法包括使用keySet()、entrySet()、forEach()、迭代器以及分别... 目录1,使用 keySet() 遍历键,再通过键获取值2,使用 entrySet() 遍历键值对3,

SpringBoot中配置文件的加载顺序解读

《SpringBoot中配置文件的加载顺序解读》:本文主要介绍SpringBoot中配置文件的加载顺序,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot配置文件的加载顺序1、命令⾏参数2、Java系统属性3、操作系统环境变量5、项目【外部】的ap

Java使用SLF4J记录不同级别日志的示例详解

《Java使用SLF4J记录不同级别日志的示例详解》SLF4J是一个简单的日志门面,它允许在运行时选择不同的日志实现,这篇文章主要为大家详细介绍了如何使用SLF4J记录不同级别日志,感兴趣的可以了解下... 目录一、SLF4J简介二、添加依赖三、配置Logback四、记录不同级别的日志五、总结一、SLF4J