【理解机器学习算法】之Nearest Shrunken Centroid(纯Python)

2024-03-06 23:12

本文主要是介绍【理解机器学习算法】之Nearest Shrunken Centroid(纯Python),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

从头开始实现最近缩小质心(NSC)分类器涉及理解它如何通过将质心缩小到所有类的总质心方向来修改基本的最近质心方法,有效地执行特征选择。这种方法特别是在微阵列预测分析(PAM)中的应用而闻名。这里,我们将概述算法的简化版本并提供一个基本的Python实现。

最近缩小质心算法的基本步骤

1. **计算质心**:计算训练数据中每个类的质心。
2. **计算总质心**:使用所有训练数据计算总质心,不论类别。
3. **缩小质心**:将每个类的质心调整到总质心方向,有效减少不太有信息量的特征的影响。缩小的程度由阈值参数 \( \delta \) 控制。
4. **分类**:对于一个新样本,计算其到每个缩小质心的距离并分配最近质心的类别。

Python实现

这个实现关注于步骤1、3和4。步骤2(计算总质心)隐含在缩小过程中。我们将假设使用简单的欧几里得距离进行分类和基本的缩小函数。注意,实际的PAM算法涉及更复杂的缩小计算,包括标准差和软阈值。

import numpy as npclass NearestShrunkenCentroid:def __init__(self, shrink_threshold):self.shrink_threshold = shrink_thresholdself.centroids = Noneself.labels = Nonedef fit(self, X, y):"""Fit the model to the data.X is a 2D numpy array of features.y is a 1D numpy array of labels."""self.labels = np.unique(y)centroids = [X[y == label].mean(axis=0) for label in self.labels]overall_centroid = X.mean(axis=0)# Shrink the centroidsself.centroids = np.array([self._shrink(centroid, overall_centroid) for centroid in centroids])def _shrink(self, centroid, overall_centroid):"""Apply shrinkage to the centroid."""diff = centroid - overall_centroidreturn overall_centroid + np.sign(diff) * np.maximum(np.abs(diff) - self.shrink_threshold, 0)def predict(self, X):"""Predict the class labels for the given data.X is a 2D numpy array of features."""distances = np.sqrt(((X[:, np.newaxis, :] - self.centroids) ** 2).sum(axis=2))nearest_centroids = distances.argmin(axis=1)return np.array([self.labels[index] for index in nearest_centroids])# Example usage
if __name__ == "__main__":# Example data: 4 samples with 2 features eachX_train = np.array([[1, 2],[2, 1],[3, 3],[6, 5]])y_train = np.array([0, 0, 1, 1])  # Class labels# New samples to classifyX_test = np.array([[2, 2],[5, 4]])# Create and train the classifierclassifier = NearestShrunkenCentroid(shrink_threshold=0.5)classifier.fit(X_train, y_train)# Predict and print the class of the new samplespredictions = classifier.predict(X_test)print("Predicted classes:", predictions)

在这个实现中:
- `fit` 方法计算每个类和总质心的质心。然后根据指定的阈值应用缩小。
- `_shrink` 方法通过减少质心中每个特征的大小朝向总质心,根据阈值应用实际的缩小。
- `predict` 方法基于最近的缩小质心对新样本进行分类。

这是最近缩小质心分类器的简化版本。在应用程序中使用的实际实现,如基因表达分析,可能涉及额外的步骤以更有效地处理数据的高维度和稀疏性。

NSC(Nearest Shrunken Centroid) vs NC(Nearest Centroid)

关于NC请参看:【理解机器学习算法】之Nearest Centroid(纯Python)-CSDN博客

最近缩小质心(NSC)与最近质心(NC)分类器都是用于分类任务的简单直观方法,但它们在处理特征空间和分类过程方面有所不同。理解这些差异对于选择适合给定数据集或问题的方法至关重要。以下是两者的比较:

最近质心(NC)

基本原理:最近质心分类器通过计算特征空间中每个类的所有样本的质心(平均值)来工作。然后,根据距离度量(通常是欧几里得距离),将新样本分类到最近质心的类。
  
优点:
  - 简单易懂和实现。
  - 对类的分布没有假设。
  - 在小到中等数据集上效率高。

缺点:
  - 在类分布重叠显著的数据集上表现可能较差。
  - 对无关特征和异常值敏感,因为所有特征对质心计算贡献相等。
  - 由于“维度的诅咒”,在高维数据上不理想。

最近缩小质心(NSC)

基本原理:最近缩小质心是最近质心的扩展,涉及一个额外的“缩小”质心到数据集的总体平均值的步骤。这种缩小有效地减少了不太有信息量的特征的影响,并可以执行隐式特征选择。

优点:
  - 减少了噪声或无关特征的影响,可能提高分类准确性。
  - 执行隐式特征选择,这在高维空间(如基因表达数据)中可能是有益的。
  - 比基本的最近质心分类器更有效地处理重叠的类分布。

缺点:
  - 由于额外的缩小步骤,比最近质心更复杂。
  - 缩小参数(delta)的选择至关重要,可能会影响性能。
  - 在没有进一步的降维技术的情况下,可能仍然难以处理非常高维的数据。

关键差异

特征选择:NSC通过缩小不太有信息量的特征隐式进行特征选择,而NC平等对待所有特征。
鲁棒性:与NC相比,NSC通常对噪声和无关特征更为鲁棒。
复杂性:由于缩小步骤和需要选择适当的缩小参数,NSC更为复杂。
适用性:对于较简单或低维的数据集,可能更倾向于使用NC作为基线模型。相比之下,NSC可能更适合于具有许多特征的数据集,特别是当许多特征可能是无关或噪声时。

在最近缩小质心和最近质心分类器之间的选择取决于您的数据集和手头问题的具体特征。NSC在处理高维数据和减少不太有信息量的特征的影响方面提供了优势,使其在生物信息学等领域特别有用。然而,对于更简单或低维的数据集,直接的最近质心分类器可能就足够了,并且更具计算效率。

这篇关于【理解机器学习算法】之Nearest Shrunken Centroid(纯Python)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/781674

相关文章

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

python删除xml中的w:ascii属性的步骤

《python删除xml中的w:ascii属性的步骤》使用xml.etree.ElementTree删除WordXML中w:ascii属性,需注册命名空间并定位rFonts元素,通过del操作删除属... 可以使用python的XML.etree.ElementTree模块通过以下步骤删除XML中的w:as

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

Python get()函数用法案例详解

《Pythonget()函数用法案例详解》在Python中,get()是字典(dict)类型的内置方法,用于安全地获取字典中指定键对应的值,它的核心作用是避免因访问不存在的键而引发KeyError错... 目录简介基本语法一、用法二、案例:安全访问未知键三、案例:配置参数默认值简介python是一种高级编