SPADE 代码略解 ade20k数据集

2024-03-06 20:38

本文主要是介绍SPADE 代码略解 ade20k数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对paper《Semantic Image Synthesis with Spatially-Adaptive Normalization》的代码梳理,主要用的是ade20k数据集

train.py

        # Training# train generatorif i % opt.D_steps_per_G == 0:trainer.run_generator_one_step(data_i)

通过这一行代码开始训练。

trainers/pix2pix_trainer.py

    def run_generator_one_step(self, data):self.optimizer_G.zero_grad()g_losses, generated = self.pix2pix_model(data, mode='generator')g_loss = sum(g_losses.values()).mean()g_loss.backward()self.optimizer_G.step()self.g_losses = g_lossesself.generated = generated

在这个函数中通过调用self.pix2pix_model(data,mode='generator')训练。(我在想为什么这样的模型架构都要用pix2pix命名,后来发现原来这种从一张图像生成另一张图像的架构都叫做pix2pix,和cgan的区别在于cgan是从噪音+图像生成另一张图像的)

class Pix2PixTrainer():"""Trainer creates the model and optimizers, and uses them toupdates the weights of the network while reporting lossesand the latest visuals to visualize the progress in training."""def __init__(self, opt):self.opt = optself.pix2pix_model = Pix2PixModel(opt)if len(opt.gpu_ids) > 0:self.pix2pix_model = DataParallelWithCallback(self.pix2pix_model,device_ids=opt.gpu_ids)self.pix2pix_model_on_one_gpu = self.pix2pix_model.moduleelse:self.pix2pix_model_on_one_gpu = self.pix2pix_modelself.generated = Noneif opt.isTrain:self.optimizer_G, self.optimizer_D = \self.pix2pix_model_on_one_gpu.create_optimizers(opt)self.old_lr = opt.lr

在这个类的构造函数里定义了self.pix2pix_model是通过Pix2PixModel来的,其中多卡的时候有个跨卡BN的操作。

models/pix2pix_model.py

    def forward(self, data, mode):input_semantics, real_image = self.preprocess_input(data)if mode == 'generator':g_loss, generated = self.compute_generator_loss(input_semantics, real_image)return g_loss, generatedelif mode == 'discriminator':d_loss = self.compute_discriminator_loss(input_semantics, real_image)return d_losselif mode == 'encode_only':z, mu, logvar = self.encode_z(real_image)return mu, logvarelif mode == 'inference':with torch.no_grad():fake_image, _ = self.generate_fake(input_semantics, real_image)return fake_imageelse:raise ValueError("|mode| is invalid")

当mode为generator的时候,调用self.compute_generator_loss(input_semantics,real_image)

这里看下这两个输入条件是通过self.preprocess_input(data)来的,具体是:

    def preprocess_input(self, data):# move to GPU and change data typesdata['label'] = data['label'].long()if self.use_gpu():data['label'] = data['label'].cuda()data['instance'] = data['instance'].cuda()data['image'] = data['image'].cuda()# create one-hot label maplabel_map = data['label']bs, _, h, w = label_map.size()nc = self.opt.label_nc + 1 if self.opt.contain_dontcare_label \else self.opt.label_ncinput_label = self.FloatTensor(bs, nc, h, w).zero_()input_semantics = input_label.scatter_(1, label_map, 1.0)# concatenate instance map if it existsif not self.opt.no_instance:inst_map = data['instance']instance_edge_map = self.get_edges(inst_map)input_semantics = torch.cat((input_semantics, instance_edge_map), dim=1)return input_semantics, data['image']

    def compute_generator_loss(self, input_semantics, real_image):G_losses = {}fake_image, KLD_loss = self.generate_fake(input_semantics, real_image, compute_kld_loss=self.opt.use_vae)###在这里输入数据,生成fake_imageif self.opt.use_vae:G_losses['KLD'] = KLD_losspred_fake, pred_real = self.discriminate(input_semantics, fake_image, real_image)G_losses['GAN'] = self.criterionGAN(pred_fake, True,for_discriminator=False)if not self.opt.no_ganFeat_loss:num_D = len(pred_fake)GAN_Feat_loss = self.FloatTensor(1).fill_(0)for i in range(num_D):  # for each discriminator# last output is the final prediction, so we exclude itnum_intermediate_outputs = len(pred_fake[i]) - 1for j in range(num_intermediate_outputs):  # for each layer outputunweighted_loss = self.criterionFeat(pred_fake[i][j], pred_real[i][j].detach())GAN_Feat_loss += unweighted_loss * self.opt.lambda_feat / num_DG_losses['GAN_Feat'] = GAN_Feat_lossif not self.opt.no_vgg_loss:G_losses['VGG'] = self.criterionVGG(fake_image, real_image) \* self.opt.lambda_vggreturn G_losses, fake_image
    def generate_fake(self, input_semantics, real_image, compute_kld_loss=False):z = NoneKLD_loss = Noneif self.opt.use_vae:z, mu, logvar = self.encode_z(real_image)if compute_kld_loss:KLD_loss = self.KLDLoss(mu, logvar) * self.opt.lambda_kldfake_image = self.netG(input_semantics, z=z)assert (not compute_kld_loss) or self.opt.use_vae, \"You cannot compute KLD loss if opt.use_vae == False"return fake_image, KLD_loss
#在训练时,采用的是不考虑vae的,也就是不会对real_image做encode操作得到一个z,
#此处的z为None,送去生成网络self.netG的只有语义标签图和Z,没有real_image。
#我一开始很迷惑这一步,只有纯语义标签用来生成,这样的话mask怎么去学习image的风格呢
#先往下看
class Pix2PixModel(torch.nn.Module):@staticmethoddef modify_commandline_options(parser, is_train):networks.modify_commandline_options(parser, is_train)return parserdef __init__(self, opt):super().__init__()self.opt = optself.FloatTensor = torch.cuda.FloatTensor if self.use_gpu() \else torch.FloatTensorself.ByteTensor = torch.cuda.ByteTensor if self.use_gpu() \else torch.ByteTensorself.netG, self.netD, self.netE = self.initialize_networks(opt) 
##在这里得到初始化网络后(这里的初始化不是真的在做初始化)的self.netG,
    def initialize_networks(self, opt):netG = networks.define_G(opt) ##在这里得到netGnetD = networks.define_D(opt) if opt.isTrain else NonenetE = networks.define_E(opt) if opt.use_vae else Noneif not opt.isTrain or opt.continue_train:netG = util.load_network(netG, 'G', opt.which_epoch, opt)if opt.isTrain:netD = util.load_network(netD, 'D', opt.which_epoch, opt)if opt.use_vae:netE = util.load_network(netE, 'E', opt.which_epoch, opt)return netG, netD, netE

models/networks/__init__.py (是network下面的__init__.py而不是model下面的)

def define_G(opt):netG_cls = find_network_using_name(opt.netG, 'generator')return create_network(netG_cls, opt)
def find_network_using_name(target_network_name, filename):
### target_network_name 是SPADE,filename是generatortarget_class_name = target_network_name + filenamemodule_name = 'models.networks.' + filenamenetwork = util.find_class_in_module(target_class_name, module_name)#在models.networks.generator里面找到SPADEGenerator这个模块并返回assert issubclass(network, BaseNetwork), \"Class %s should be a subclass of BaseNetwork" % networkreturn network
def create_network(cls, opt):net = cls(opt) #输入一些网络参数net.print_network() #打印网络if len(opt.gpu_ids) > 0:assert(torch.cuda.is_available())net.cuda()net.init_weights(opt.init_type, opt.init_variance) #这里才是真的在做初始化网络return net

接下来,具体看它调用的SPADEGenerator的网络结构

models/networks/generator.py

class SPADEGenerator(BaseNetwork):@staticmethoddef modify_commandline_options(parser, is_train):parser.set_defaults(norm_G='spectralspadesyncbatch3x3')parser.add_argument('--num_upsampling_layers',choices=('normal', 'more', 'most'), default='normal',help="If 'more', adds upsampling layer between the two middle resnet blocks. If 'most', also add one more upsampling + resnet layer at the end of the generator")return parserdef __init__(self, opt):super().__init__()self.opt = optnf = opt.ngfself.sw, self.sh = self.compute_latent_vector_size(opt)### 输入为256x256,得到的sw=2,sh=2 计算潜向量的大小if opt.use_vae:# In case of VAE, we will sample from random z vectorself.fc = nn.Linear(opt.z_dim, 16 * nf * self.sw * self.sh)else:# Otherwise, we make the network deterministic by starting with# downsampled segmentation map instead of random zself.fc = nn.Conv2d(self.opt.semantic_nc, 16 * nf, 3, padding=1)self.head_0 = SPADEResnetBlock(16 * nf, 16 * nf, opt)self.G_middle_0 = SPADEResnetBlock(16 * nf, 16 * nf, opt)self.G_middle_1 = SPADEResnetBlock(16 * nf, 16 * nf, opt)self.up_0 = SPADEResnetBlock(16 * nf, 8 * nf, opt)self.up_1 = SPADEResnetBlock(8 * nf, 4 * nf, opt)self.up_2 = SPADEResnetBlock(4 * nf, 2 * nf, opt)self.up_3 = SPADEResnetBlock(2 * nf, 1 * nf, opt)final_nc = nfif opt.num_upsampling_layers == 'most':self.up_4 = SPADEResnetBlock(1 * nf, nf // 2, opt)final_nc = nf // 2self.conv_img = nn.Conv2d(final_nc, 3, 3, padding=1)self.up = nn.Upsample(scale_factor=2)def compute_latent_vector_size(self, opt):if opt.num_upsampling_layers == 'normal':num_up_layers = 5elif opt.num_upsampling_layers == 'more':num_up_layers = 6elif opt.num_upsampling_layers == 'most':num_up_layers = 7else:raise ValueError('opt.num_upsampling_layers [%s] not recognized' %opt.num_upsampling_layers)sw = opt.crop_size // (2**num_up_layers)sh = round(sw / opt.aspect_ratio)return sw, shdef forward(self, input, z=None):seg = input ### 这里的input是语义标签图if self.opt.use_vae:# we sample z from unit normal and reshape the tensorif z is None:z = torch.randn(input.size(0), self.opt.z_dim,dtype=torch.float32, device=input.get_device())x = self.fc(z)x = x.view(-1, 16 * self.opt.ngf, self.sh, self.sw)else:# we downsample segmap and run convolutionx = F.interpolate(seg, size=(self.sh, self.sw)) ##对语义标签图插值后变成size更小的特征图?x = self.fc(x) #卷积操作x = self.head_0(x, seg) #这里的x已经变成了sh X sw这么大,通道为16*nf的特征图了,而seg还是原图大小,特征通道为151的初始inputx = self.up(x) #上采样2倍x = self.G_middle_0(x, seg) #不改变通道值的SPADEResnetBlock,建议先去看一下SPADEResnetBlock的构造if self.opt.num_upsampling_layers == 'more' or \self.opt.num_upsampling_layers == 'most':x = self.up(x) x = self.G_middle_1(x, seg) #SPADEResnetBlockx = self.up(x)x = self.up_0(x, seg)x = self.up(x)x = self.up_1(x, seg)x = self.up(x)x = self.up_2(x, seg)x = self.up(x)x = self.up_3(x, seg)if self.opt.num_upsampling_layers == 'most':x = self.up(x)x = self.up_4(x, seg)x = self.conv_img(F.leaky_relu(x, 2e-1))x = F.tanh(x)return x

这一步我觉得需要注意的是输入到generator的input,把mask作为input是为了得到spatial信息的。但我之前一直以为是把mask做encode之后用image来学习仿射变换的参数“注射”到特征图的标准化中,原来generator从头到尾都用不到image啊,估计只有loss的时候才用到。这里提出的生成器里,主要分为1.用vae(这里又分为有没有提供real image)2.不用vae 。用vae的时候如果提供了real image,就算real image的均值和方差得到一个z向量,如果没有提供,就生成一个符合标准正太分布的随机噪声,然后连接全连接层生成一个z向量。不用vae的时候是对segmantic map做降采样处理作为输入。

models/networks/architecture.py

class SPADEResnetBlock(nn.Module):def __init__(self, fin, fout, opt):super().__init__()# Attributesself.learned_shortcut = (fin != fout)fmiddle = min(fin, fout)# create conv layersself.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=1)self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=1)if self.learned_shortcut:self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False)# apply spectral norm if specifiedif 'spectral' in opt.norm_G:self.conv_0 = spectral_norm(self.conv_0)self.conv_1 = spectral_norm(self.conv_1)if self.learned_shortcut:self.conv_s = spectral_norm(self.conv_s)# define normalization layersspade_config_str = opt.norm_G.replace('spectral', '')self.norm_0 = SPADE(spade_config_str, fin, opt.semantic_nc)self.norm_1 = SPADE(spade_config_str, fmiddle, opt.semantic_nc)if self.learned_shortcut:self.norm_s = SPADE(spade_config_str, fin, opt.semantic_nc)# note the resnet block with SPADE also takes in |seg|,# the semantic segmentation map as inputdef forward(self, x, seg):x_s = self.shortcut(x, seg)dx = self.conv_0(self.actvn(self.norm_0(x, seg)))dx = self.conv_1(self.actvn(self.norm_1(dx, seg)))out = x_s + dxreturn outdef shortcut(self, x, seg):if self.learned_shortcut:x_s = self.conv_s(self.norm_s(x, seg))else:x_s = xreturn x_sdef actvn(self, x):return F.leaky_relu(x, 2e-1)

models/networks/normalization.py

class SPADE(nn.Module):def __init__(self, config_text, norm_nc, label_nc):super().__init__()assert config_text.startswith('spade')parsed = re.search('spade(\D+)(\d)x\d', config_text)param_free_norm_type = str(parsed.group(1))ks = int(parsed.group(2))if param_free_norm_type == 'instance':self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False)elif param_free_norm_type == 'syncbatch':self.param_free_norm = SynchronizedBatchNorm2d(norm_nc, affine=False)elif param_free_norm_type == 'batch':self.param_free_norm = nn.BatchNorm2d(norm_nc, affine=False)else:raise ValueError('%s is not a recognized param-free norm type in SPADE'% param_free_norm_type)# The dimension of the intermediate embedding space. Yes, hardcoded.nhidden = 128pw = ks // 2self.mlp_shared = nn.Sequential(nn.Conv2d(label_nc, nhidden, kernel_size=ks, padding=pw),nn.ReLU())self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw)self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw)def forward(self, x, segmap):# Part 1. generate parameter-free normalized activationsnormalized = self.param_free_norm(x)  # 与仿射变换参数无关的标准化# Part 2. produce scaling and bias conditioned on semantic mapsegmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest')#对segmap做resizeactv = self.mlp_shared(segmap)gamma = self.mlp_gamma(actv)beta = self.mlp_beta(actv)# apply scale and biasout = normalized * (1 + gamma) + beta#这里解释一个为什么是1+gamma而不是gamma,作者自己解释是因为怕gamma学习到的结果接近于0,                #那乘以normalized以后就为0了,失去了normalized的作用,所以要用1+gamma,确保 #normalized有发挥作用同时还能学习仿射变换return out

这里我放一下paper里的网络图,可以对照代码看一下

(对应SPADE)

(左边对应SPADEResnetBlock,右边对应Generator)

最后,还是说一下我看这篇paper的一个疑惑问题,除了做语义图像合成,比如像上面这些代码,如果我们不用--use_vae的话,那训练的时候就是一个mask对应一个real image,最后学到的风格是一致的,还可以用来做不同风格的图像生成吗(考虑输入real image来影响生成结果)?看看作者在github的回复:

To produce outputs with different styles, you need to train with VAE by using --use_vae flag. It it was not trained with VAE, it cannot generate different styles.

The pretrained models of COCO, ADE20K and Cityscapes are all without VAE, because we actually didn't want random generation of styles, in order to keep the evaluation metric reproducible. As you know. for GauGAN video, we trained with VAE. Once you finish training with VAE, to produce different styles for the same semantic layout input, simply run the model multiple times. It will always generate different results.

如果你想要在同样的Mask上生成多种风格的结果,用--use_vae即可。

好吧,再看看use_vae做了什么

models/pix2pix_model.py

    def generate_fake(self, input_semantics, real_image, compute_kld_loss=False):z = NoneKLD_loss = Noneif self.opt.use_vae:z, mu, logvar = self.encode_z(real_image) ###在这里生成了zif compute_kld_loss:KLD_loss = self.KLDLoss(mu, logvar) * self.opt.lambda_kldfake_image = self.netG(input_semantics, z=z)assert (not compute_kld_loss) or self.opt.use_vae, \"You cannot compute KLD loss if opt.use_vae == False"return fake_image, KLD_loss
    def encode_z(self, real_image):mu, logvar = self.netE(real_image)z = self.reparameterize(mu, logvar)return z, mu, logvar
    def reparameterize(self, mu, logvar):std = torch.exp(0.5 * logvar)eps = torch.randn_like(std)return eps.mul(std) + mu

models/networks/encoder.py

class ConvEncoder(BaseNetwork):""" Same architecture as the image discriminator """def __init__(self, opt):super().__init__()kw = 3pw = int(np.ceil((kw - 1.0) / 2))ndf = opt.ngfnorm_layer = get_nonspade_norm_layer(opt, opt.norm_E)self.layer1 = norm_layer(nn.Conv2d(3, ndf, kw, stride=2, padding=pw))self.layer2 = norm_layer(nn.Conv2d(ndf * 1, ndf * 2, kw, stride=2, padding=pw))self.layer3 = norm_layer(nn.Conv2d(ndf * 2, ndf * 4, kw, stride=2, padding=pw))self.layer4 = norm_layer(nn.Conv2d(ndf * 4, ndf * 8, kw, stride=2, padding=pw))self.layer5 = norm_layer(nn.Conv2d(ndf * 8, ndf * 8, kw, stride=2, padding=pw))if opt.crop_size >= 256:self.layer6 = norm_layer(nn.Conv2d(ndf * 8, ndf * 8, kw, stride=2, padding=pw))self.so = s0 = 4self.fc_mu = nn.Linear(ndf * 8 * s0 * s0, 256)self.fc_var = nn.Linear(ndf * 8 * s0 * s0, 256)self.actvn = nn.LeakyReLU(0.2, False)self.opt = optdef forward(self, x):if x.size(2) != 256 or x.size(3) != 256:x = F.interpolate(x, size=(256, 256), mode='bilinear')x = self.layer1(x)x = self.layer2(self.actvn(x))x = self.layer3(self.actvn(x))x = self.layer4(self.actvn(x))x = self.layer5(self.actvn(x))if self.opt.crop_size >= 256:x = self.layer6(self.actvn(x))x = self.actvn(x)x = x.view(x.size(0), -1)mu = self.fc_mu(x)logvar = self.fc_var(x)return mu, logvar

encode具体就不分析。

写的比较乱,主要是为了梳理一下自己的思路,如果有错误还请评论指正。

这篇关于SPADE 代码略解 ade20k数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/781283

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②

Vue实现路由守卫的示例代码

《Vue实现路由守卫的示例代码》Vue路由守卫是控制页面导航的钩子函数,主要用于鉴权、数据预加载等场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、概念二、类型三、实战一、概念路由守卫(Navigation Guards)本质上就是 在路

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS

C#中通过Response.Headers设置自定义参数的代码示例

《C#中通过Response.Headers设置自定义参数的代码示例》:本文主要介绍C#中通过Response.Headers设置自定义响应头的方法,涵盖基础添加、安全校验、生产实践及调试技巧,强... 目录一、基础设置方法1. 直接添加自定义头2. 批量设置模式二、高级配置技巧1. 安全校验机制2. 类型

Python屏幕抓取和录制的详细代码示例

《Python屏幕抓取和录制的详细代码示例》随着现代计算机性能的提高和网络速度的加快,越来越多的用户需要对他们的屏幕进行录制,:本文主要介绍Python屏幕抓取和录制的相关资料,需要的朋友可以参考... 目录一、常用 python 屏幕抓取库二、pyautogui 截屏示例三、mss 高性能截图四、Pill

使用MapStruct实现Java对象映射的示例代码

《使用MapStruct实现Java对象映射的示例代码》本文主要介绍了使用MapStruct实现Java对象映射的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、什么是 MapStruct?二、实战演练:三步集成 MapStruct第一步:添加 Mave