全连接神经网络算法原理(激活函数、前向传播、梯度下降法、损失函数、反向传播)

本文主要是介绍全连接神经网络算法原理(激活函数、前向传播、梯度下降法、损失函数、反向传播),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

        • 前言
        • 1、全连接神经网络的整体结构:
          • 全连接神经网络模型是由输入层、隐藏层、输出层所组成,全连接神经网络结构如下图所示:
          • 全连接神经网络的每一层都是由一个一个的神经元所组成的,因此只要搞清楚神经元的本质就可以搞清楚全连接神经网络了。如图下所示,这是一个全连接神经网络神经元的模型图:
        • 2、激活函数
          • 2.1、Sigmoid函数
          • 2.2、Tanh函数
          • 2.3、ReLU函数
          • 2.4、Leaky ReLU函数
          • 2.5、SoftMax激活函数
        • 3、前向传播
        • 4、损失函数:
        • 5、梯度下降法:
        • 6、反向传播:

前言

全连接神经网络是学习深度学习的基础,其中最重要的原因是,全连接神经网络利用了反向传播算法进行参数更新,使得神经网络可以通过不断喂给数据进行参数更新达到不断学习的目的,反向传播算法是梯度下降法在深度神经网络上的具体实现方式。反向传播算法其原理就是利用梯度下降法来不断更新神经网络的参数,目前几乎所有的神经网络参数的更新的方式都是利用的梯度下降法或者经过优化的梯度下降法。
  
神经网络可以帮助我们做什么呢?目前可以解决两类任务,分类任务和回归任务:

  • 分类任务就是对输入的数据特征进行学习,输出是对应输入数据预测类别,比如输入一些猫和狗的数据并对其进行学习,现在输入一张新的图片,判断图中的图片是否是猫还是狗;
  • 回归任务就是对输入的数据特征进行学习,输出是对应输入数据的预测值,比如输入历史的天气数据相关特征进行学习,现在输入一段历史的天气数据相关特征数据,输出第二日的温度预测值;
1、全连接神经网络的整体结构:
全连接神经网络模型是由输入层、隐藏层、输出层所组成,全连接神经网络结构如下图所示:

请添加图片描述

全连接神经网络的每一层都是由一个一个的神经元所组成的,因此只要搞清楚神经元的本质就可以搞清楚全连接神经网络了。如图下所示,这是一个全连接神经网络神经元的模型图:

请添加图片描述
该神经元的数学表达式:a = h( w∗x + b )

  • b为偏置,用于控制神经元被激活的容易程度;
  • w表示各个信号的权重,用于控制各个信号的重要性;
  • h()为激活函数,是一种非线性函数;

为什么神经网络都要加上激活函数,同时该激活函数为什么要一定是非线性的呢?

如果神经网络中没有使用非线性激活函数,无论堆叠多少层神经元,整个网络的输出都将是输入的线性组合,这样多层神经网络将等同于单层神经网络,无法发挥多层网络带来的优势;

2、激活函数

在神经网络中比较常用的激活函数有Sigmoid函数、Tanh函数、ReLU函数、Leaky ReLU函数、softmax函数;

2.1、Sigmoid函数

Sigmoid函数最早是在逻辑回归中提到的,它作为解决二分类的问题出场。其值域是在[0,1]之间,输出的值可以作为分类的概率。

Sigmoid函数的公式和导数如下式所示:
请添加图片描述
Sigmoid函数优点:
  1、简单、非常适用分类任务;
Sigmoid函数缺点:
  1、反向传播训练时有梯度消失的问题;
  2、输出值区间为(0,1),关于0不对称;
  3、梯度更新在不同方向走得太远,使得优化难度增大,训练耗时;

2.2、Tanh函数

函数表达式和其对应的导数表达式如下式所示:

Tanh函数,其输出值在区间 [-1, 1]
请添加图片描述

Tanh函数优点:
1、解决了Sigmoid函数输出值非0对称的问题;
2、训练比Sigmoid函数快,更容易收敛;
Tanh函数缺点:
1、反向传播训练时有梯度消失的问题;
2、Tanh函数和Sigmoid函数非常相似;

2.3、ReLU函数

ReLU函数是目前在神经网络使用最流行的激活函数。其函数表达式和其对应的导数非常简单:
请添加图片描述

ReLU函数优点:
  1、解决了梯度消失的问题;
  2、计算更为简单,没有Sigmoid函数和Tanh函数的指数运算;
ReLU函数缺点:
  1、训练时可能出现神经元死亡;

2.4、Leaky ReLU函数

Leaky ReLU函数是ReLU函数的变体。其函数和对应导数的表达式为:
请添加图片描述
Leaky ReLU函数优点:
  1、解决了ReLU的神经元死亡问题;
Leaky ReLU函数缺点:
  1、无法为正负输入值提供一致的关系预测(不同区间函数不同);

2.5、SoftMax激活函数

SoftMax函数通常被用在多分类网络模型中,其表达式如下:
请添加图片描述
SoftMax函数的值域是在[0,1]之间的,并且存在多个输出,例如是一个5分类的任务,那么SoftMax函数最终的输出是对应每个类别的的概率,同时这5个类别对应的概率相加最终的结果为1。因此在多分类任务的场景下,神经网络的最后一层一般都是使用SoftMax函数来作为激活函数。

3、前向传播

神经网络的输出是通过前向传播最后输出的,前向传播是将数据特征作为输入,输入到隐藏层,将数据特征和对应的权重相乘同时再和偏置进行求和,将计算的结果通过激活函数进行激活,将激活函数输出值作为下一层神经网络层的输入再和对应的权重相乘同时和对应的偏置求和,再将计算的结果通过激活函数进行激活,不断重复上述的过程直到神经网络的输出层,最终得到神经网络的输出值。
请添加图片描述

4、损失函数:

损失函数:我们要计算所有数据真实值和输出值之间的误差和并计算出平均值,这个函数称为均方误差函数,也是线性回归模型的损失函数;
请添加图片描述

5、梯度下降法:

场景:在一个漆黑的夜晚,一个人要下山,但是他完全看不到周围的环境,只能通过手去感知。因此这个人就想到一个办法,朝着自己的四周去摸山体的坡度,如果摸到一个方法的坡度是向下的并且也是最陡峭的,那么就走到这个手摸到的位置,就是通过这样的方法不断一步一步的走,这个人终于走到了山底。具体可以想象成右图,那个黑点就是人。
请添加图片描述

6、反向传播:

神经网络的反向传播不断更新神经网络的w和b,从而使得神经网络的输出和真实label不断的逼近,损失函数也不断的逼近0,所以我们常常将模型的训练轮次和损失值变化画图,显示出来,如果损失值在一定的轮次后趋于平缓不再下降,那么就认为模型的训练已经收敛了;

反向传播的作用,就是用来不断更新神经网络的w和b,从提高神经网络的预测准确率;

模型的训练轮次和损失值变化画图:
请添加图片描述

这篇关于全连接神经网络算法原理(激活函数、前向传播、梯度下降法、损失函数、反向传播)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/781233

相关文章

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

MySQL字符串常用函数详解

《MySQL字符串常用函数详解》本文给大家介绍MySQL字符串常用函数,本文结合实例代码给大家介绍的非常详细,对大家学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql字符串常用函数一、获取二、大小写转换三、拼接四、截取五、比较、反转、替换六、去空白、填充MySQL字符串常用函数一、

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

PostgreSQL中rank()窗口函数实用指南与示例

《PostgreSQL中rank()窗口函数实用指南与示例》在数据分析和数据库管理中,经常需要对数据进行排名操作,PostgreSQL提供了强大的窗口函数rank(),可以方便地对结果集中的行进行排名... 目录一、rank()函数简介二、基础示例:部门内员工薪资排名示例数据排名查询三、高级应用示例1. 每