从零开始在kitti数据集上训练yolov5

2024-03-06 12:20

本文主要是介绍从零开始在kitti数据集上训练yolov5,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0.准备工作

0.1 在kitti官网下载kitti数据集

KITTI官网:https://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d
只需要下载图片和标签
在这里插入图片描述
解压后应该有一个training和和testing文件夹,training文件夹下应该有一个image_2文件夹和一个label_2文件夹,分别对应训练集的图片和标签,图片和标签的名称是一一对应的,因此我们拿这部分图片和标签进行训练。

0.2 clone yolov5代码

Github官网:https://github.com/ultralytics/yolov5

git clone https://github.com/ultralytics/yolov5.git
conda create -n yolov5 python=3.8 -y
conda activate yolov5
cd yolov5
pip install -r requirements.txt

1.转换kitti数据集标签格式

在这里插入图片描述

1.1 kitti数据集标签

首先看kitti数据集的标签,每一行有15个属性:他们的含义如下:

  • [0] 目标类比别(type),共有8种类别,分别是CarVanTruckPedestrianPerson_sittingCyclistTramMiscDontCare。DontCare表示某些区域是有目标的,但是由于一些原因没有做标注,比如距离激光雷达过远。但实际算法可能会检测到该目标,但没有标注,这样会被当作false positive (FP)。这是不合理的。用DontCare标注后,评估时将会自动忽略这个区域的预测结果,相当于没有检测到目标,这样就不会增加FP的数量了。此外,在 2D 与 3D Detection Benchmark 中只针对 Car、Pedestrain、Cyclist 这三类。
  • [1] 截断程度(truncated),表示处于边缘目标的截断程度,取值范围为0~1,0表示没有截断,取值越大表示截断程度越大。处于边缘的目标可能只有部分出现在视野当中,这种情况被称为截断。
  • [2] 遮挡程度(occlude),取值为(0,1,2,3)。0表示完全可见,1表示小部分遮挡,2表示大部分遮挡,3表示未知(遮挡过大)。
  • [3] 观测角度(alpha),取值范围为(-pi, pi)。是在相机坐标系下,以相机原点为中心,相机原点到物体中心的连线为半径,将物体绕相机y轴旋转至相机z轴,此时物体方向与相机x轴的夹角。这相当于将物体中心旋转到正前方后,计算其与车身方向的夹角。
  • [4-7] 二维检测框(bbox),目标二维矩形框坐标,分别对应left、top、right、bottom,即左上(xy)和右下的坐标(xy)。
  • [8-10] 三维物体的尺寸(dimensions),分别对应高度、宽度、长度,以米为单位。
  • [11-13] 中心坐标(location),三维物体底部中心在相机坐标系下的位置坐标(x,y,z),单位为米。
  • [14] 旋转角(rotation_y),取值范围为(-pi, pi)。表示车体朝向,绕相机坐标系y轴的弧度值,即物体前进方向与相机坐标系x轴的夹角。rolation_y与alpha的关系为alpha=rotation_y - theta,theta为物体中心与车体前进方向上的夹角。alpha的效果是从正前方看目标行驶方向与车身方向的夹角,如果物体不在正前方,那么旋转物体或者坐标系使得能从正前方看到目标,旋转的角度为theta。

参考链接:https://blog.csdn.net/u011489887/article/details/126316851

我们需要的是目标类别和2d检测框。

1.2 yolo需要的标签(coco数据集格式)

在这里插入图片描述
包含5个属性

  • [0] 目标类别索引(因此一会还需要一个类别和索引对应表)
  • [1-2] 中心点坐标,x_center,y_center
  • [3-4] 检测框宽、高,width,height

需要注意的是:这里的方框坐标和宽高需要归一化,即需要除以图像的宽高,如图所示
在这里插入图片描述

1.3 转换代码

import glob
import random
import cv2
from tqdm import tqdmdic = {'Car': 0, 'Van': 1, 'Truck': 2, 'Tram': 3, 'Pedestrian': 4, 'Person_sitting': 4, 'Cyclist': 5, 'Misc': 6}def changeformat():img_path = 'PATH/TO/KITTI/training/image_2/*.png'      # 修改为自己的 KITTI数据集图像位置label_path = 'PATH/TO/KITTI/training/label_2/'         # 修改为自己的 KITTI数据集标签位置filename_list = glob.glob(img_path)save_path = 'PATH/TO/NEW/LABELS/'                      # 修改为自己的 标签另存的位置for img_name in tqdm(filename_list, desc='Processing'):image_name = img_name[-10: -4]   # 000000 图片的名字label_file = label_path + image_name + '.txt'     # 根据图像名称查找对应标签savelabel_path = save_path + image_name + '.txt'  # 标签另存的文件with open(label_file, 'r') as f:labels = f.readlines()img = cv2.imread(img_name)h, w, c = img.shapedw = 1.0 / wdh = 1.0 / h        # 方便一会归一化for label in labels:label = label.split(' ')classname = label[0]if classname not in dic: continue  # 我忽略了kitti数据集中的misc和dontcarex1, y1, x2, y2 = label[4: 8]x1 = eval(x1)y1 = eval(y1)x2 = eval(x2)y2 = eval(y2)# 归一化处理bx = (x1 + x2) / 2.0 * dwby = (y1 + y2) / 2.0 * dhbw = (x2 - x1) * dwbh = (y2 - y1) * dh# 这里定义数据保存的精度bx = round(bx, 6)by = round(by, 6)bw = round(bw, 6) bh = round(bh, 6)print('Done convert!')

2.划分数据集,准备训练

2.1 划分训练集和验证集

training文件夹共有7480张图片,按照训练集:验证集=8:2的比例进行划分。
代码如下:

def splitdataset():import randomrandom.seed(1234)label_path = 'PATH/TO/NEW/LABELS/'       # 这里修改为上一步保存的新标签的位置filename_list = glob.glob(label_path)num_file = len(filename_list)val = 0.2      # 验证集的比例try:val_file = open('PATH/TO/KITTI/val.txt', 'w', encoding='utf-8')    # 包含验证集的txt文件,修改为自己想要保存的位置train_file = open('PATH/TO/KITTI/train.txt', 'w', encoding='utf-8')  # 包含训练集的txt文件,修改为自己想要保存的位置for i in range(num_file):if random.random() < val:val_file.write(f'PATH/TO/KITTI/images/{i:06}.png\n')   # 修改为kitti数据集图片的位置,即txt文件里存的是图片的位置else:train_file.write(f'PATH/TO/KITTI/images/{i:06}.png\n')         finally:val_file.close()train_file.close()

2.2 准备配置文件

--datasets|--images          # 7480 images|--labels          # 7480 labels|--train.txt|--val.txt|--kitti.yaml|--yolov5s.yaml

修改coco.yaml文件为kitti.yaml

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: python train.py --data coco.yaml
# parent
# ├── yolov5
# └── datasets
path: PATH/TO/KITTI/datasets     # 修改为包含图片和标签的父文件夹
train: train.txt # train images (relative to 'path') 
val: val.txt # val images (relative to 'path') nc: 7      # 修改为类别数量
# Classes
names:0: car1: van2: truck3: tram4: pedestrian5: cyclist6: misc

修改yolov5s.yaml文件,这里根据选用的模型修改对应的文件,只需要修改类别数即可。
在这里插入图片描述

3.clone代码,开始训练

根据选用的模型大小,在github下载对应的预训练权重。
然后开始训练,train.py的相关参数设置可以参考这篇文章https://blog.csdn.net/m0_56175815/article/details/131125861,以及官方网站https://docs.ultralytics.com/zh/yolov5/tutorials/tips_for_best_training_results/

主要需要设置的参数包括:cfg(上一步的kitti.yaml),data(上一步修改的yolov5.yaml),batch-size(-1表示自动计算batch,推荐使用),weights(预训练权重)
其余的是一些调参的超参数:epochs(训练周期),cos-lr(是否使用模拟余弦退火调整学习率),label-smoothing(标签平滑设置,一般取小于0.1的数)

python train.py --weights PATH/TO/pretrained_weight/yolov5s.pt \
--cfg PATH/TO/yolov5s.yaml \
--data PATH/TO/kitti.yaml \
--epochs 300 \
--batch-size -1 \
--name kitti \
--cos-lr \
--label-smoothing 0.05

训练完成后的结果如下:
在这里插入图片描述

这篇关于从零开始在kitti数据集上训练yolov5的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/780050

相关文章

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元