glibc-2.23 puts源码分析

2024-03-06 10:59
文章标签 分析 源码 glibc 2.23 puts

本文主要是介绍glibc-2.23 puts源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在分析puts代码之前先看一些基本的知识:
一些flag:

#define _IO_USER_BUF 1                /* User owns buffer; don't delete it on close. */
#define _IO_UNBUFFERED 2              /* 无缓冲,此时会使用_IO_FILE内部的shortbuf作为缓冲区 */
#define _IO_NO_READS 4                /* Reading not allowed */
#define _IO_NO_WRITES 8               /* Writing not allowd */
#define _IO_EOF_SEEN 0x10             //读到末尾了
#define _IO_ERR_SEEN 0x20             //出错了
#define _IO_DELETE_DONT_CLOSE 0x40    /* Don't call close(_fileno) on cleanup. */
#define _IO_LINKED 0x80               /* Set if linked (using _chain) to streambuf::_list_all.*/
#define _IO_IN_BACKUP 0x100				//不太明白这个
#define _IO_LINE_BUF 0x200            //行缓冲#define _IO_TIED_PUT_GET 0x400        /* Set if put and get pointer logicly tied. */#define _IO_CURRENTLY_PUTTING 0x800   //当前正在输出......什么时候会被设置.  
#define _IO_IS_APPENDING 0x1000       //append fopen的时候mode里面有 + 
#define _IO_IS_FILEBUF 0x2000         //不太明白
#define _IO_BAD_SEEN 0x4000           //出错了.#define _IO_USER_LOCK 0x8000          //有锁????

_IO_FILE结构 :

struct _IO_FILE {int _flags;			/* High-order word is _IO_MAGIC; rest is flags. *///高两字节是固定的magic,低两字节被用来储存flags/* The following pointers correspond to the C++ streambuf protocol. *//* Note:  Tk uses the _IO_read_ptr and _IO_read_end fields directly. *///读相关char* _IO_read_ptr;	/* Current read pointer */char* _IO_read_end;	/* End of get area. */char* _IO_read_base;	/* Start of putback+get area. *///写相关char* _IO_write_base;	/* Start of put area. */char* _IO_write_ptr;	/* Current put pointer. */char* _IO_write_end;	/* End of put area. *///缓冲区char* _IO_buf_base;	/* Start of reserve area. */char* _IO_buf_end;	/* End of reserve area. *//* The following fields are used to support backing up and undo. */ //撤销操作???//什么时候会有撤销操作char *_IO_save_base;    /* Pointer to start of non-current get area. */char *_IO_backup_base;  /* Pointer to first valid character of backup area */char *_IO_save_end;     /* Pointer to end of non-current get area. */struct _IO_marker *_markers;struct _IO_FILE *_chain;      //File 链int _fileno;                  //fd文件描述符
#if 0int _blksize;
#elseint _flags2;                  //
#endif_IO_off_t _old_offset; /* This used to be _offset but it's too small.  */#define __HAVE_COLUMN /* temporary *//* 1+column number of pbase(); 0 is unknown. */unsigned short _cur_column;     //signed char _vtable_offset;     //虚表偏移char _shortbuf[1];              //无缓冲的时候要用这个作为缓冲区./*  char* _save_gptr;  char* _save_egptr; */_IO_lock_t *_lock;              //🔒
#ifdef _IO_USE_OLD_IO_FILE
};

vtable:

#ifdef _LIBC
versioned_symbol (libc, _IO_new_do_write, _IO_do_write, GLIBC_2_1);
versioned_symbol (libc, _IO_new_file_attach, _IO_file_attach, GLIBC_2_1);
versioned_symbol (libc, _IO_new_file_close_it, _IO_file_close_it, GLIBC_2_1);
versioned_symbol (libc, _IO_new_file_finish, _IO_file_finish, GLIBC_2_1);
versioned_symbol (libc, _IO_new_file_fopen, _IO_file_fopen, GLIBC_2_1);
versioned_symbol (libc, _IO_new_file_init, _IO_file_init, GLIBC_2_1);
versioned_symbol (libc, _IO_new_file_setbuf, _IO_file_setbuf, GLIBC_2_1);
versioned_symbol (libc, _IO_new_file_sync, _IO_file_sync, GLIBC_2_1);
versioned_symbol (libc, _IO_new_file_overflow, _IO_file_overflow, GLIBC_2_1);
versioned_symbol (libc, _IO_new_file_seekoff, _IO_file_seekoff, GLIBC_2_1);
versioned_symbol (libc, _IO_new_file_underflow, _IO_file_underflow, GLIBC_2_1);
versioned_symbol (libc, _IO_new_file_write, _IO_file_write, GLIBC_2_1);
versioned_symbol (libc, _IO_new_file_xsputn, _IO_file_xsputn, GLIBC_2_1);
#endifconst struct _IO_jump_t _IO_file_jumps =
{JUMP_INIT_DUMMY,JUMP_INIT(finish, _IO_file_finish),JUMP_INIT(overflow, _IO_file_overflow),JUMP_INIT(underflow, _IO_file_underflow),JUMP_INIT(uflow, _IO_default_uflow),JUMP_INIT(pbackfail, _IO_default_pbackfail),JUMP_INIT(xsputn, _IO_file_xsputn),JUMP_INIT(xsgetn, _IO_file_xsgetn),JUMP_INIT(seekoff, _IO_new_file_seekoff),JUMP_INIT(seekpos, _IO_default_seekpos),JUMP_INIT(setbuf, _IO_new_file_setbuf),JUMP_INIT(sync, _IO_new_file_sync),JUMP_INIT(doallocate, _IO_file_doallocate),JUMP_INIT(read, _IO_file_read),JUMP_INIT(write, _IO_new_file_write),JUMP_INIT(seek, _IO_file_seek),JUMP_INIT(close, _IO_file_close),JUMP_INIT(stat, _IO_file_stat),JUMP_INIT(showmanyc, _IO_default_showmanyc),JUMP_INIT(imbue, _IO_default_imbue)
};

puts函数
在这里插入图片描述
接着puts函数进入了_IO_sputn,看一下它的定义
在这里插入图片描述
是调用了vtable里面的 xsputn函数,从上面的那个结构体初始化可以看出,就是_IO_file_xsputn函数,也就是_IO_new_file_xsputn函数

转到_IO_new_file_xsputn函数看一下:

_IO_size_t _IO_new_file_xsputn (_IO_FILE *f, const void *data, _IO_size_t n)
{const char *s = (const char *) data;_IO_size_t to_do = n;             //to_do是剩余要输出的长度int must_flush = 0;               //标是否要输出缓冲区内容_IO_size_t count = 0;             //输出缓冲区剩余部分大于 所要输出的长度if (n <= 0)return 0;if ((f->_flags & _IO_LINE_BUF) && (f->_flags & _IO_CURRENTLY_PUTTING)){count = f->_IO_buf_end - f->_IO_write_ptr;//看一下缓冲区剩余的空间还有多少,如果无法把data拷贝进去,那么会输出缓冲区内容,//这里是看一下把data可以全部拷贝到缓冲区的情况,若指定了行缓冲,那么就找一下是否存在\n,//存在的话就需要flush 输出缓冲区。if (count >= n){const char *p;for (p = s + n; p > s; ){if (*--p == '\n'){count = p - s + 1;must_flush = 1;break;}}}}else if (f->_IO_write_end > f->_IO_write_ptr)count = f->_IO_write_end - f->_IO_write_ptr; /* Space available. *//* Then fill the buffer. */if (count > 0){if (count > to_do)                      //先尽可能的把数据拷贝到缓冲区count = to_do;
#ifdef _LIBCf->_IO_write_ptr = __mempcpy (f->_IO_write_ptr, s, count);
#elsememcpy (f->_IO_write_ptr, s, count);f->_IO_write_ptr += count;            
#endifs += count;to_do -= count;}if (to_do + must_flush > 0)                         //还有数据没有拷贝到缓冲区或者遇到了行缓冲,这时需要flush缓冲区,{_IO_size_t block_size, do_write;/* Next flush the (full) buffer. */if (_IO_OVERFLOW (f, EOF) == EOF)                  //flush 缓冲区,并且重置write_base,write_ptr,write_end指针./* If nothing else has to be written we must not signal thecaller that everything has been written.  */return to_do == 0 ? EOF : n - to_do;/* Try to maintain alignment: write a whole number of blocks.  */block_size = f->_IO_buf_end - f->_IO_buf_base;do_write = to_do - (block_size >= 128 ? to_do % block_size : 0);//block_size = 128;//剩余部分的大小 拆成 block_size * k + r.//do_write = block_size * kif (do_write){count = new_do_write (f, s, do_write);          //大块输出,直接sys_write.to_do -= count;if (count < do_write)return n - to_do;}//除去整块大小剩余的部分,调用_IO_default_xsputn if (to_do)to_do -= _IO_default_xsputn (f, s+do_write, to_do); //把剩余的r 输出,(一定是小于 block_size )}return n - to_do;
}

代码逻辑比较简单,这里就不多说明了。
该函数里面调用了三个函数:

	_IO_OVERFLOW (f, EOF) == EOFnew_do_write (f, s, do_write);_IO_default_xsputn (f, s+do_write, to_do);

继续分析这三个函数:

_IO_OVERFLOW :
这个实际上是调用了_IO_file_overflow函数,代码里面的名称是_IO_new_file_overflow,
可以由函数名大概猜出,该函数的就是用于当输出缓冲区满了的时候,继续写会溢出,所以要flush输出缓冲区,同样还有_IO_file_underflow函数是read时候缓冲区内容不够,重新往缓冲区读入数据

//溢出.
int _IO_new_file_overflow (_IO_FILE *f, int ch)
{//如果不可写的话直接返回,这个是flag是根据打开文件的方式而设置的if (f->_flags & _IO_NO_WRITES) /* SET ERROR */{f->_flags |= _IO_ERR_SEEN;__set_errno (EBADF);return EOF;}///* If currently reading or no buffer allocated. */if ((f->_flags & _IO_CURRENTLY_PUTTING) == 0 || f->_IO_write_base == NULL){//这里目前还不太明白什么时候会调用他.........../* Allocate a buffer if needed. */if (f->_IO_write_base == NULL){_IO_doallocbuf (f);_IO_setg (f, f->_IO_buf_base, f->_IO_buf_base, f->_IO_buf_base);}/* Otherwise must be currently reading.If _IO_read_ptr (and hence also _IO_read_end) is at the buffer end,logically slide the buffer forwards one block (by setting theread pointers to all point at the beginning of the block).  Thismakes room for subsequent output.Otherwise, set the read pointers to _IO_read_end (leaving thatalone, so it can continue to correspond to the external position). */if (__glibc_unlikely (_IO_in_backup (f))){size_t nbackup = f->_IO_read_end - f->_IO_read_ptr;_IO_free_backup_area (f);f->_IO_read_base -= MIN (nbackup,f->_IO_read_base - f->_IO_buf_base);f->_IO_read_ptr = f->_IO_read_base;}if (f->_IO_read_ptr == f->_IO_buf_end)f->_IO_read_end = f->_IO_read_ptr = f->_IO_buf_base;f->_IO_write_ptr = f->_IO_read_ptr;f->_IO_write_base = f->_IO_write_ptr;f->_IO_write_end = f->_IO_buf_end;f->_IO_read_base = f->_IO_read_ptr = f->_IO_read_end;f->_flags |= _IO_CURRENTLY_PUTTING;if (f->_mode <= 0 && f->_flags & (_IO_LINE_BUF | _IO_UNBUFFERED))f->_IO_write_end = f->_IO_write_ptr;}if (ch == EOF)return _IO_do_write (f, f->_IO_write_base,f->_IO_write_ptr - f->_IO_write_base);//把缓冲区现有的数据输出.if (f->_IO_write_ptr == f->_IO_buf_end ) /* Buffer is really full */if (_IO_do_flush (f) == EOF)return EOF;*f->_IO_write_ptr++ = ch;if ((f->_flags & _IO_UNBUFFERED)|| ((f->_flags & _IO_LINE_BUF) && ch == '\n'))if (_IO_do_write (f, f->_IO_write_base,f->_IO_write_ptr - f->_IO_write_base) == EOF)return EOF;return (unsigned char) ch;
}

_IO_do_write代码:


int _IO_new_do_write (_IO_FILE *fp, const char *data, _IO_size_t to_do)
{return (to_do == 0|| (_IO_size_t) new_do_write (fp, data, to_do) == to_do) ? 0 : EOF;
}static _IO_size_t new_do_write (_IO_FILE *fp, const char *data, _IO_size_t to_do)
{_IO_size_t count;if (fp->_flags & _IO_IS_APPENDING)fp->_offset = _IO_pos_BAD;else if (fp->_IO_read_end != fp->_IO_write_base){_IO_off64_t new_pos = _IO_SYSSEEK (fp, fp->_IO_write_base - fp->_IO_read_end, 1);if (new_pos == _IO_pos_BAD) return 0;fp->_offset = new_pos;}count = _IO_SYSWRITE (fp, data, to_do);if (fp->_cur_column && count)fp->_cur_column = _IO_adjust_column (fp->_cur_column - 1, data, count) + 1;_IO_setg (fp, fp->_IO_buf_base, fp->_IO_buf_base, fp->_IO_buf_base);fp->_IO_write_base = fp->_IO_write_ptr = fp->_IO_buf_base;fp->_IO_write_end = (fp->_mode <= 0&& (fp->_flags & (_IO_LINE_BUF | _IO_UNBUFFERED))? fp->_IO_buf_base : fp->_IO_buf_end);return count;
}

_IO_default_xsputn 代码 (这个函数会把数据拷贝到缓冲区,然后在缓冲区满的时候flush缓冲区,直到把全部数据拷贝到缓冲区):

_IO_size_t _IO_default_xsputn (_IO_FILE *f, const void *data, _IO_size_t n)
{const char *s = (char *) data;_IO_size_t more = n;if (more <= 0)return 0;for (;;){/* Space available. */if (f->_IO_write_ptr < f->_IO_write_end)          {_IO_size_t count = f->_IO_write_end - f->_IO_write_ptr;if (count > more)count = more;//数量不同的时候使用不同的拷贝方式if (count > 20){
#ifdef _LIBCf->_IO_write_ptr = __mempcpy (f->_IO_write_ptr, s, count);
#elsememcpy (f->_IO_write_ptr, s, count);f->_IO_write_ptr += count;
#endifs += count;}else if (count){char *p = f->_IO_write_ptr;_IO_ssize_t i;for (i = count; --i >= 0; )*p++ = *s++;f->_IO_write_ptr = p;}more -= count;}//if (more == 0 || _IO_OVERFLOW (f, (unsigned char) *s++) == EOF)break;more--;}return n - more;
}

emmmmmm貌似只是把代码抄了一次…突然发现C语言的文件操作有很多不明白的地方…还是去看一下的C语言的文件操作,之后应该就能看懂代码为什么要这样写了…

这篇关于glibc-2.23 puts源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/779846

相关文章

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO