【YOLO v5 v7 v8 v9小目标改进】DWRSeg:优化的多尺度处理,传统的深度学习模型可能在不同尺度的特征提取上存在冗余

本文主要是介绍【YOLO v5 v7 v8 v9小目标改进】DWRSeg:优化的多尺度处理,传统的深度学习模型可能在不同尺度的特征提取上存在冗余,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DWRSeg:优化的多尺度处理,传统的深度学习模型可能在不同尺度的特征提取上存在冗余

    • 提出背景
      • 问题:实时语义分割需要快速且准确地处理图像数据,提取出有意义的特征来识别不同的对象。
    • 小目标涨点
      • YOLO v5 魔改
      • YOLO v7 魔改
      • YOLO v8 魔改
      • YOLO v9 魔改

 


提出背景

论文:https://arxiv.org/pdf/2212.01173v3.pdf

现有的语义分割方法,如ESPNet (V2)、DABNet 和 CGNet,设计了基于多速率深度空间扩张卷积的模块来捕获单一输入特征图的多尺度上下文信息,以提高实时语义分割的特征提取效率。

然而,这些设计存在根本性的缺陷,导致深度扩张卷积中的大量权重很少被学习,特别是对于那些具有较大扩张率的权重,从而使得多尺度上下文信息无法有效地被提取。

比如一把特制的钥匙(深度扩张卷积),可以打开一系列不同大小和形状的锁(需要提取的特征信息)。

这把钥匙设计得非常独特,它的齿部可以伸缩(“扩张率”),理论上可以适应不同的锁孔。

但问题在于,这把钥匙尽管能够调整,却往往难以精确匹配所有类型的锁,尤其是那些特殊形状或大小的锁。

结果就是,虽然理论上这把钥匙能开很多锁,实际上它只能有效打开少数几种,而且很难对某些锁进行精确匹配。

这里的“锁”比喻了需要识别和分割的复杂特征,而“钥匙的齿部伸缩”则类似于深度学习中的深度扩张卷积操作,旨在捕捉不同尺度的特征。

但现有方法的问题在于,尽管这种设计允许模型理论上能处理多尺度的特征,实际上却很难精确地适应那些特别复杂或者大小极端的特征——就像那些特殊的锁无法被钥匙准确打开一样。

为了解决这个问题,本文提出了一种新的方法,可以想象为先用一组不同的小钥匙(区域残差化)去粗略匹配不同类型的锁,这样可以确定哪些锁是容易打开的,哪些是难以打开的。

接着,对于那些难以打开的锁,再使用一把能够精确调整的特制钥匙(语义残差化)去细致地适应和打开。

这种方法更有效,因为它不是盲目地尝试用一把万能钥匙去打开所有锁,而是先根据锁的类型和大小选择合适的钥匙,然后再进行精细的调整,这样就大大提高了打开锁的效率和成功率。

问题:多速率深度空间扩张卷积在同一特征图上同时应用多个接收场可能导致某些接收场失效。

  • 解法:区域残差化(粗调)+ 语义残差化(精调)
    • 之所以使用这个解法,是因为直接在每个特征图上应用具有多个接收场的深度扩张卷积可能导致一些接收场无效,因为不是每个特征图都需要所有接收场。

在这里插入图片描述
上图是,传统多尺度上下文信息提取结构与提出的新结构之间的对比。

它说明了传统方法是如何通过不同扩张率的扩张卷积处理输入特征,然后结合它们的。

而新方法则包括两个独特的阶段:区域残差化和语义残差化,随后进行融合以产生最终的残差。

与传统的多尺度上下文信息提取结构相比,提出的新结构通过将信息提取流程分解为区域残差化和语义残差化两个独立阶段,从而实现了对输入特征的更有效处理。

这种方法的主要优势在于它能够更加精确和有效地利用深度扩张卷积,因为它避免了不必要的计算和冗余的接收场大小,确保了更加高效的特征提取。

 

从粗加工(DWR模块)到细加工(SIR模块),最后通过简化的组装过程(编解码器设计)完成,DWRSeg网络(本文提出的方法)能够高效且准确地完成实时语义分割任务。

在这里插入图片描述

DWR模块利用多尺度扩张卷积来捕获不同尺度的上下文信息。

SIR模块是早期阶段的简化版本,适用于较小的接收场。

这两种模块都旨在高效提取特征,然后传递给解码器。

在这里插入图片描述

上图展示了整个网络结构的概览,包括编码器中的初始块(stem block)、SIR模块和DWR模块,以及将不同阶段的信息整合成最终预测结果的解码器。

这为图像数据如何从输入到输出通过网络流动提供了直观的视图。

起始模块作为网络的入口,处理初始图像数据;分割头(Segmentation head)用于解码器中产生最终的分割图像。

问题:实时语义分割需要快速且准确地处理图像数据,提取出有意义的特征来识别不同的对象。

解法:DWRSeg网络采用编解码器结构,利用了DWR模块和SIR模块来提高特征提取的效率和精度。

  • 子特征1:区域残差化

    • 作用:为了在不同区域的特征提取中实现专门化处理,它通过3x3卷积和批归一化(BN)生成更加集中的特征表达。
    • 原因:某些特征区域的复杂性要求使用更专注的处理方法,从而使得特征表达更加简明和直接,减少了后续处理的复杂度。
  • 子特征2:语义残差化

    • 作用:在区域残差化的基础上,通过不同扩张率的深度分离卷积进行语义上的细节捕捉,提取更加丰富的上下文信息。
    • 原因:图像中的不同对象需要不同尺度的上下文理解,通过调整扩张率,能够更精确地捕获对应的特征信息。
  • 子特征3:DWR模块的创新设计

    • 作用:DWR模块融合了多个不同扩张率的卷积过程,允许在高级网络阶段处理更广泛的上下文信息。
    • 原因:在网络的高阶段,需要更全面的视野来理解图像,以获得足够的上下文信息进行精确的分割。
  • 子特征4:SIR模块的简化设计

    • 作用:SIR模块针对较小的接收场景进行了优化,适用于对细节敏感的低阶段特征提取。
    • 原因:在网络的初级阶段,细节特征更为重要,通过SIR模块可以在不牺牲性能的前提下,加速对这些细节的处理。
  • 子特征5:编解码器的高效结构

    • 作用:使用类似全卷积网络(FCN)的简化解码器结构,有效地将不同阶段的特征图进行融合,形成最终的预测。
    • 原因:为了将从不同模块提取的特征有效地结合起来,形成最终的高质量输出,需要一个高效的信息合并和上采样机制。

 


小目标涨点

更新中…

YOLO v5 魔改

YOLO v7 魔改

YOLO v8 魔改

YOLO v9 魔改

这篇关于【YOLO v5 v7 v8 v9小目标改进】DWRSeg:优化的多尺度处理,传统的深度学习模型可能在不同尺度的特征提取上存在冗余的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/779241

相关文章

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

一文详解Java异常处理你都了解哪些知识

《一文详解Java异常处理你都了解哪些知识》:本文主要介绍Java异常处理的相关资料,包括异常的分类、捕获和处理异常的语法、常见的异常类型以及自定义异常的实现,文中通过代码介绍的非常详细,需要的朋... 目录前言一、什么是异常二、异常的分类2.1 受检异常2.2 非受检异常三、异常处理的语法3.1 try-

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Java Response返回值的最佳处理方案

《JavaResponse返回值的最佳处理方案》在开发Web应用程序时,我们经常需要通过HTTP请求从服务器获取响应数据,这些数据可以是JSON、XML、甚至是文件,本篇文章将详细解析Java中处理... 目录摘要概述核心问题:关键技术点:源码解析示例 1:使用HttpURLConnection获取Resp

Java中Switch Case多个条件处理方法举例

《Java中SwitchCase多个条件处理方法举例》Java中switch语句用于根据变量值执行不同代码块,适用于多个条件的处理,:本文主要介绍Java中SwitchCase多个条件处理的相... 目录前言基本语法处理多个条件示例1:合并相同代码的多个case示例2:通过字符串合并多个case进阶用法使用

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2