【idd】——印度自动驾驶场景语义分割数据集(解析代码)

2024-03-06 06:50

本文主要是介绍【idd】——印度自动驾驶场景语义分割数据集(解析代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

语义分割,街景场景

在这里插入图片描述

简介

该数据集由安装在汽车上的前置摄像头获得的图像组成。这辆车在海德拉巴、班加罗尔等城市及其郊区行驶。图像大多是1080p分辨率,但也有一些图像是720p和其他分辨率。
在这里插入图片描述
我们的数据集标注有独特的标签,如广告牌、机动人力车、动物等。此外,我们亦会留意道路旁可能安全的驾驶区域。

数据集的标签被组织为4级层次结构。每个级别都给出了唯一的整数标识符。如下图所示:

y轴上每个标签的像素数。

四个级别的标签层次结构和中间级别(级别2,级别3)的标签id。

将用于预测和地面真实掩模的颜色编码分别对应于相应的掩模。

例子

在这里插入图片描述
输入图像的一些例子,基线cityscape预训练模型的预测,在这个数据集上训练的相同基线的预测,以及验证集的基本事实(按列顺序),可以在下面看到。
可以看到,在我们的数据集上训练的模型清楚地将道路旁的泥泞可行驶区域与道路本身区分开来。我们的数据集有广告牌和道路中间的路边/中间的标签。此外,我们的图像帧来自非结构化的驾驶设置,道路泥泞,车道弟子不常遵循,道路上有大量的车辆。

语义label的解析

参考:semantic-segmentation-indian-driving-dataset
code:

import os 
import cv2
import sys
import jsonimport numpy as np
import skimage.io as iofrom skimage.draw import polygon
from skimage import img_as_float# %%
root = './anue/'
root = 'D:/19segmentation/idd-20k-II/idd20kIID/19segmentation/idd-20k-II/idd20kII'# %% [markdown]
# # Get all labels in the dataset as a dictionary# %%
def get_all_labels(root):labels = []final_labels = {}img_folder, segmap_folder = os.listdir(root)#     sub_path_train_img = os.path.join(root, img_folder, './train')sub_path_train_seg = os.path.join(root, segmap_folder, './train')#     sub_path_val_img = os.path.join(root, img_folder, './val')sub_path_val_seg = os.path.join(root, segmap_folder, './val')# extract training labelsfor folder in os.listdir(sub_path_train_seg):
#         curr_img_folder = os.path.join(sub_path_train_img, folder)curr_seg_folder = os.path.join(sub_path_train_seg, folder)for file in os.listdir(curr_seg_folder):if 'json' not in file:continuef = open(os.path.join(curr_seg_folder, file), 'r')data = json.loads(f.read())for obj in data['objects']:if obj['label'] not in labels:labels.append(obj['label'])# extract validation labelsfor folder in os.listdir(sub_path_val_seg):
#         curr_img_folder = os.path.join(sub_path_val_img, folder)curr_seg_folder = os.path.join(sub_path_val_seg, folder)for file in os.listdir(curr_seg_folder):if 'json' not in file:continuef = open(os.path.join(curr_seg_folder, file), 'r')data = json.loads(f.read())for obj in data['objects']:if obj['label'] not in labels:labels.append(obj['label'])for i in range(len(labels)):final_labels[labels[i]] = ireturn final_labels# %%
labels = get_all_labels(root)# %%
labels# %% [markdown]
# # Generate Segmentation Maps# %%
def create_segmentation_maps(root, labels):img_folder, segmap_folder = os.listdir(root)if not os.path.exists('./img'):os.makedirs('img')if not os.path.exists('./img/train'):os.makedirs('img/train')if not os.path.exists('./img/val'):os.makedirs('img/val')if not os.path.exists('./seg'):os.makedirs('seg')if not os.path.exists('./seg/train'):os.makedirs('seg/train')if not os.path.exists('./seg/val'):os.makedirs('seg/val')sub_path_train_img = os.path.join(root, img_folder, './train')sub_path_train_seg = os.path.join(root, segmap_folder, './train')sub_path_val_img = os.path.join(root, img_folder, './val')sub_path_val_seg = os.path.join(root, segmap_folder, './val')for folder in os.listdir(sub_path_train_seg):curr_img_folder = os.path.join(sub_path_train_img, folder)curr_seg_folder = os.path.join(sub_path_train_seg, folder)for file in os.listdir(curr_img_folder):id = file.split('_')[0]img = cv2.imread(os.path.join(curr_img_folder, file))f = open(os.path.join(curr_seg_folder, id+'_gtFine_polygons.json'), 'r')data = json.loads(f.read())seg_map = np.zeros((data['imgWidth'],data['imgHeight']))for obj in data['objects']:label = obj['label']poly = np.array(obj['polygon'])rr, cc = polygon(poly[:,0], poly[:,1], seg_map.shape)seg_map[rr,cc] = labels[label]cv2.imwrite('./img/train/'+id+'.png', img)cv2.imwrite('./seg/train/'+id+'.png', seg_map.T)for folder in os.listdir(sub_path_val_seg):curr_img_folder = os.path.join(sub_path_val_img, folder)curr_seg_folder = os.path.join(sub_path_val_seg, folder)for file in os.listdir(curr_img_folder):id = file.split('_')[0]img = cv2.imread(os.path.join(curr_img_folder, file))f = open(os.path.join(curr_seg_folder, id+'_gtFine_polygons.json'), 'r')data = json.loads(f.read())seg_map = np.zeros((data['imgWidth'],data['imgHeight']), np.uint8)for obj in data['objects']:label = obj['label']poly = np.array(obj['polygon'])rr, cc = polygon(poly[:,0], poly[:,1], seg_map.shape)seg_map[rr,cc] = labels[label]cv2.imwrite('./img/val/'+id+'.png', img)cv2.imwrite('./seg/val/'+id+'.png', seg_map.T)# %%
create_segmentation_maps(root, labels)

解析出来可视化的例子
在这里插入图片描述

语义标签

共39个类别, 类别仅供参考
在这里插入图片描述

这篇关于【idd】——印度自动驾驶场景语义分割数据集(解析代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/779187

相关文章

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶