Python-sklearn-LinearRegression

2024-03-05 20:04

本文主要是介绍Python-sklearn-LinearRegression,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 手动实现/使用sklearn实现线性回归训练

1.1 单特征线性回归(One Feature)

1.2 多特征线性回归(Multiple Features)

1.3 多项式线性回归(Polynomial)


1 手动实现/使用sklearn实现线性回归训练

1.1 单特征线性回归(One Feature)

假设函数(One feature):

h(x^{i}) = w * x^{i} + b

损失函数(平方差损失MSE):

J(w, b) = \frac{1}{2m}\sum_{i=1}^{m}(h(x^{i}) - y^{i})^{2}

优化器(梯度下降Gradient descent):

w: = w - \alpha \frac{\partial }{\partial w}J(w, b) = w - \alpha \frac{1}{m}\sum_{i=1}^{m}[(h(x^{i}) - y^{i}) * x^{i}]

b: = b - \alpha \frac{\partial }{\partial b}J(w, b) = b - \alpha \frac{1}{m}\sum_{i=1}^{m}(h(x^{i}) - y^{i})

"""
@Title: linear_regression_with_one_feature
@Time: 2024/2/29
@Author: Michael Jie
"""import randomimport numpy as np
from sklearn.linear_model import LinearRegressionprint("--------------------手动实现LinearRegression--------------------")
# 数据集,y = 2.7 * x + 1.9
x = np.random.uniform(-3, 3, (100, 1))
y = 2.7 * x + 1.9 + np.random.normal(0, 0.5, (100, 1))
m = len(x)# 初始化训练参数
w, b = random.random(), random.random()
# 定义最小损失,学习率,最大训练轮次
epsilon, alpha, max_iter = 1e-4, 1e-2, 1e4# 训练
num = 0  # 训练轮次
j_init = 0  # 用于计算两次训练损失的差值
while True:# 假设函数,单特征线性回归h = w * x + b# 损失,平方差损失函数j = 1 / (2 * m) * np.sum((h - y) ** 2)if abs(j - j_init) < epsilon or num > max_iter:break# 优化器,梯度下降w -= alpha * (1 / m * np.sum((h - y) * x))b -= alpha * (1 / m * np.sum(h - y))num += 1j_init = jif num % 100 == 0:print("第{num}次训练,损失为:{j}".format(num=num, j=j))
print("训练后参数为:({w}, {b})".format(w=w, b=b))
# 预测
print("输入10的预测值为:{y}".format(y=w * 10 + b))print("--------------------使用sklearn实现LinearRegression--------------------")
linear = LinearRegression()
linear.fit(x, y)
print("训练后参数为:({w}, {b})".format(w=linear.coef_, b=linear.intercept_))
print("输入10的预测值为:{y}".format(y=linear.predict(np.array([[10]]))))"""
--------------------手动实现LinearRegression--------------------
第100次训练,损失为:0.24785011069810353
第200次训练,损失为:0.12133612402719189
训练后参数为:(2.6975988345352375, 1.8337117307000714)
输入10的预测值为:28.809700076052447
--------------------使用sklearn实现LinearRegression--------------------
训练后参数为:([[2.68709722]], [1.93437403])
输入10的预测值为:[[28.80534627]]
"""

1.2 多特征线性回归(Multiple Features)

假设函数(Multiple Features):

h(x) = w_{1} * x_{1} + w_{2} * x_{2} + ... + w_{n} * x_{n} + b = w^{T} * x + b

损失函数(平方差损失MSE):

J(w_{1},w_{2},...,w_{n}, b) = \frac{1}{2m}\sum_{i=1}^{m}(h(x^{i}) - y^{i})^{2}

优化器(梯度下降Gradient descent):

w_{j} := w_{j} - \alpha \frac{\partial }{\partial w_{j}}J(w, b) = w_{j} - \alpha \frac{1}{m}\sum_{i=1}^{m}[(h(x^{i}) - y^{i}) * x_{j}^{i}]

b: = b - \alpha \frac{\partial }{\partial b}J(w, b) = b - \alpha \frac{1}{m}\sum_{i=1}^{m}(h(x^{i}) - y^{i})

"""
@Title: linear_regression_with_multiple_features
@Time: 2024/2/29
@Author: Michael Jie
"""import randomimport numpy as np
from sklearn.linear_model import LinearRegressionprint("--------------------手动实现LinearRegression--------------------")
# 数据集,y = 2.1 * x1 + 1.7 * x2 + 4.4
x = np.random.uniform(-3, 3, (100, 2))
y = np.dot(x, np.array([[2.1, 1.7]]).T) + 4.4 + np.random.normal(0, 0.5, (100, 1))
m = len(x)# 初始化训练参数
w, b = [[random.random(), random.random()]], random.random()
w = np.array(w)
# 定义最小损失,学习率,最大训练轮次
epsilon, alpha, max_iter = 1e-4, 1e-3, 1e4# 训练
num = 0  # 训练轮次
j_init = 0  # 用于计算两次训练损失的差值
while True:# 假设函数,单特征线性回归h = np.dot(x, w.T) + b# 损失,平方差损失函数j = 1 / (2 * m) * np.sum((h - y) ** 2)if abs(j - j_init) < epsilon or num > max_iter:break# 优化器,梯度下降w -= alpha * (1 / m * np.sum((h - y) * x))b -= alpha * (1 / m * np.sum(h - y))num += 1j_init = jif num % 100 == 0:print("第{num}次训练,损失为:{j}".format(num=num, j=j))
print("训练后参数为:({w}, {b})".format(w=w, b=b))
# 预测
print("输入(10, 20)的预测值为:{y}".format(y=np.dot(np.array([[10, 20]]), w.T) + b))print("--------------------使用sklearn实现LinearRegression--------------------")
linear = LinearRegression()
linear.fit(x, y)
print("训练后参数为:({w}, {b})".format(w=linear.coef_, b=linear.intercept_))
print("输入(10, 20)的预测值为:{y}".format(y=linear.predict(np.array([[10, 20]]))))"""
--------------------手动实现LinearRegression--------------------
第100次训练,损失为:6.917612630867695
第200次训练,损失为:5.128139537455417
...
第2300次训练,损失为:0.2550961384480396
第2400次训练,损失为:0.2423823553289109
训练后参数为:([[1.92022977 1.85815836]], 4.258528651534591)
输入(10, 20)的预测值为:[[60.62399361]]
--------------------使用sklearn实现LinearRegression--------------------
训练后参数为:([[2.09568973 1.68056098]], [4.45455187])
输入(10, 20)的预测值为:[[59.02266883]]
"""

1.3 多项式线性回归(Polynomial)

"""
@Title: linear_regression_with_polynomial
@Time: 2024/2/29 19:41
@Author: Michael
"""import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures# 数据集,y = 1.4 * x ** 2 - 3.1 * x + 2.6
x = np.random.uniform(-3, 3, (100, 1))
y = 1.4 * x ** 2 - 3.1 * x + 2.6 + np.random.normal(0, 0.5, (100, 1))# 预处理数据集,将一元二次函数转化成三元一次函数,然后使用线性回归训练
poly = PolynomialFeatures(degree=2)
poly.fit(x)
x = poly.transform(x)
# 手动实现预处理
degree = np.array([[0, 1, 2]])
# x = x ** degree# 回归训练
linear = LinearRegression()
linear.fit(x, y)
print("训练后参数为:({w}, {b})".format(w=linear.coef_, b=linear.intercept_))
print("输入10的预测值为:{y}".format(y=linear.predict(np.array([[1, 10, 100]]))))"""
训练后参数为:([[ 0.         -3.1180901   1.40622675]], [2.62986504])
输入10的预测值为:[[112.07163862]]
"""

这篇关于Python-sklearn-LinearRegression的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/777652

相关文章

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.