滴滴面试题:打车业务问题如何分析?

2024-03-05 19:50

本文主要是介绍滴滴面试题:打车业务问题如何分析?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【题目】公司的app(类似滴滴、uber)为用户提供打车服务。现有四张表,分别是“司机数据”表,“订单数据”表,“在线时长数据”表,“城市匹配数据”表。(滴滴面试题)。下图左表是“司机数据”表的部分数据。为了便于讲解,之后在涉及到表的时候,用下图右表来代替。右表中展示了左表的部分代表性数据。

 

上表中的“产品线id”: 1是表示专车,2表示企业,3表示快车,4表示企业快车

业务问题

1. 分析出2020年8月各城市每天的司机数、快车订单量和快车流水数据。

2. 分析出2020年8月和9月,每个月的北京市新老司机(首单日期在当月为新司机)的司机数、在线时长和TPH(订单量/在线时长)数据。

3. 分别提取司机数大于20,司机总在线时长大于2小时,订单量大于1,乘客数大于1的城市名称数据。(文末有模拟数据下载)

【解题思路】

为了方便数据处理,首先将这些表中所有的日期数据转化为日期格式 ‘年-月-日’ 的形式。需要使用 date_fromat 函数。

sql语句为

update 司机数据 set 日期=date_format(日期,'%Y-%m-%d');
update 司机数据 set 首次完成订单时间=date_format(首次完成订单时间,'%Y-%m-%d');
update 订单数据 set 日期=date_format(日期,'%Y-%m-%d');
update 在线时长数据 set 日期=date_format(日期,'%Y-%m-%d');

处理后的表如下图,可以发现对应日期列已经修改过来了。

 

接下来看需要分析的业务问题。

1. 提取2020年8月各城市每天的司机数、快车订单量和快车流水数据。

(1) 2020年8月各城市每天的司机数

使用逻辑树分析方法,拆解业务需求的每个部分。

“2020年8月”,可以用 between and 函数来对时间进行条件限制。

“每天的司机数”,司机数的计算用到的表是 “司机数据” 表。当出现“每天”要想到《猴子 从零学会sql》里讲过的分组汇总,来解决“每天”这样的问题。用“日期“来分组(group by),用 count(司机id) 来汇总司机数。

“各城市”,城市在“城市匹配数据“表中。也就是“每个城市”所以用“城市“来分组(group by)。

这里涉及到两个表“司机数据” 表和“城市匹配数据“表,所以遇到多表查询的情况,要想到《猴子 从零学会sql》里讲过的多表联结。下图是两表联结的条件(通过城市id联结)。

使用哪种联结呢?

因为要查询的是司机数,所以要保留“司机数据”表中的全部数据,因此使用左联结。

sql语句如下

查询结果如下图(部分展示)

(2) 2020年8月各城市每天的快车订单量

“2020年8月”,可以用 between and 函数来对时间进行条件限制。

“每天的快车订单量”,对于计算快车订单量,用到的表是 “订单数据” 表。根据题目的字段解释,“产品线id”: 1是表示专车,2表示企业,3表示快车,4表示企业快车。可以用where子句把快车数据先筛选出来(产品线id=3)。

当出现“每天”要想到《猴子 从零学会sql》里讲过的分组汇总,来解决“每天”这样的问题。用“日期“来分组(group by),用 count(订单id) 来汇总订单量。

“各城市”,城市在“城市匹配数据“表中。也就是“每个城市”所以用“城市“来分组(group by)。

在 “订单数据” 表、“司机数据”表中都没有城市数据,所以需要三表联结,下面是3表的关系图。

使用哪种联结呢?

因为要查询的是快车订单量,所以要保留“订单数据”表中的全部数据,因此使用左联结来与“司机数据”进行联结(联结依据为“司机id”)。然后,因为要对第一次联结后的表的“城市id”与“城市名称”进行匹配,所以我们用左联结来进行匹配。

sql语句如下

查询结果如下图

(3) 2020年8月各城市每天的快车流水数据

“2020年8月”,可以用 between and 来对时间进行条件限制。

“每天的快车流水数据”,对于计算快车订单量,用到的表是 “订单数据” 表。根据题目的字段解释,“产品线id”: 1是表示专车,2表示企业,3表示快车,4表示企业快车。可以用where子句把快车数据先筛选出来(产品线id=3)。当出现“每天”要想到《猴子 从零学会sql》里讲过的分组汇总,来解决“每天”这样的问题。用“日期“来分组(group by),用 sum(流水) 来汇总流水。

“各城市”,城市在“城市匹配数据“表中。也就是“每个城市”所以用“城市“来分组(group by)。在 “订单数据” 表、“司机数据”表中都没有城市数据,所以需要三表联结,下面是3表的关系图。

使用哪种联结呢?

因为要查询的是快车流水量,所以要保留“订单数据”表中的全部数据,因此使用左联结来与“司机数据”进行联结(联结依据为“司机id”)。然后,因为要对第一次联结后的表的“城市id”与“城市名称”进行匹配,所以我们用左联结来进行匹配。

sql语句如下

查询结果如下

2. 提取2020年8月和9月,每个月的北京市新老司机(首单日期在当月为新司机)的司机数、在线时长和TPH(订单量/在线时长)数据。

我们将新老司机分开来分析,先针对新司机进行提取,然后老司机同理可得。

(1)提取2020年8月和9月,每个月的北京市新司机的司机数。

使用多维度拆解分析方法来拆解题目为以下子问题:

1)每个月的司机数

2)条件:新司机

2)时间条件:2020年8月和9月

3)城市条件:北京市

先来看子问题1:每个月的司机数

对于司机数的计算,用到 “ 司机数据” 表。根据《猴子 从零学会sql》里讲过的,遇到“每个”这类型问题要用分组汇总。“每个月”按月份分组(group by),用count(司机id)来汇总司机数。

select count(司机id) as 司机数from 司机数据group by 月份;

这里的月份怎么得到呢?

可以通过“日期”列获得:date_format(日期,'%Y-%m')

所以,上面sql修改为:

select count(司机id) as 司机数from 司机数据group by date_format(日期,'%Y-%m') as 月份;

子问题2,条件:新司机

对于 ‘新司机’ 这个条件,由题目中的释义可知:首单日期在当月为新司机。因此我们通过比较 "日期" 与 “首次完成订单日” 两列的年月 相等的,即为新司机。

我们用函数 year(日期) 来提取日期中的年份。用函数 month(日期) 来提取日期中的月份。

利用如下“where”条件来表示新司机。​​​​​​​

where year(首次完成订单时间)=year(日期) and month(首次完成订单时间)=month(日期) 

加入“新司机”条件后的sql如下:​​​​​​​

select count(司机id) as 新司机数from 司机数据where year(首次完成订单时间)=year(日期) and month(首次完成订单时间)=month(日期) group by date_format(日期,'%Y-%m') as 年月;

子问题3,时间条件:2020年8月和9月

 

利用where加条件,between...and 函数限制时间范围。

  •  
  •  
where 日期 between '2020-08-01' and '2020-08-31'or 日期 between '2020-09-01' and '2020-09-31'

 

  •  
  •  
  •  
  •  
  •  
  •  
  •  
select count(司机id) as 新司机数from 司机数据where year(首次完成订单时间)=year(日期) and month(首次完成订单时间)=month(日期) and (日期 between '2020-08-01' and '2020-08-31'or 日期 between '2020-09-01' and '2020-09-31')group by date_format(日期,'%Y-%m') as 年月;

 

 

子问题4,城市条件:北京市

利用where添加城市条件,城市id等于北京市的id。

  •  
where 城市id ='100000'

 

最终sql如下

 

查询结果如下

 

(2) 提取2020年8月和9月,每个月的北京市新司机的在线时长。

 

对于在线时长的计算,用到 “ 在线时长数据” 表。根据《猴子 从零学会sql》里讲过的,遇到“每个”这类型问题要用分组汇总。“每个月”按月份分组(group by),在线时长的总长利用sum(在线时长)来计算。

 

而我们发现新司机在 “在线时长数据” 表 中并没有,而是在 “司机数据”表 中通过查询语句才能得到,因此我们用两个表的联结,得到 8,9月北京新司机的在线时长,然后再利用子查询,使用sum(在线时长)得到总时长。

 

sql语句解析如下

 

查询结果如下

(3) 提取2020年8月和9月,每个月的北京市新司机的TPH(订单量/在线时长)。

由题可知,TPH=订单量/在线时长。其中在线时长我们在上一题中已经求得,因此只需求出订单量即可。

订单量的计算,会用到 “订单数据” 表,用count(订单id)来计算。然后思路与上题一样,新司机在 “在线时长数据” 表中并没有,而是在 “司机数据”表 中通过查询语句才能得到。

因此我们用两个表的联结,得到 8,9月北京新司机的在线时长,然后再利用子查询,使用count(订单id)得到总订单量。

sql语句解析如下

查询结果如下

因此,2020年8月和9月,每个月的北京市新司机的TPH=订单量/在线时长=2/4=0.5。

对于老司机的司机数,在线时长以及TPH,同理可得,只需要将 “新司机” 的条件 换成 “老司机” 即可,其他语句都不变。

3. 分别提取司机数大于20,司机总在线时长大于2小时,订单量大于1,乘客数大于1的城市名称数据。

(1) 司机数大于20的城市名称。

司机数的计算用count(司机id),用到的是“司机数据”表,城市名称在 “城市匹配数据”中,用表的联结。联结图如下。

 

sql语句解析如下

查询结果如下

(2) 司机总在线时长大于2小时城市名称。

总在线时长用sum(在线时长)来计算,用的是 “在线时长数据”表,而这个表中没有城市id,因此我们需要先联结“司机数据”表,得到城市id,再通过联结“城市匹配数据”表,得到对应的城市名称。

sql 语句解析如下

查询结果如下

(3) 订单量大于1的城市名称。

订单量的计算用count(订单id),乘客数的计算用count(乘客id),用到的表为“订单数据表”,而这个表中没有城市id。

我们需要先通过“司机数据”表联结,得到对应的城市id,在通过“城市匹配数据”表进行联结,得到相应的城市名称。

sql语句解析如下

查询结果如下

(4) 乘客数大于1的城市名称。

乘客数通过count(乘客id)来计算,用到的表为“订单数据”表,而这个表中并没有城市id,所以我们需要联结 “司机数据”表来得到相应的城市id,再通过“城市匹配数据”联结,得到相应的城市名称。

sql语句解析如下

查询结果如下

【本题考点】

1.这次试题重点要考察的是表的联结。当题目中涉及到多个表之间的关系时,我们要找到多个表之间是通过什么条件关联的,然后进行多表关联。

2.考查如何将复杂问题拆解为简单问题的能力,可以使用逻辑树分析方法。

3.如何下载案例数据?

这篇关于滴滴面试题:打车业务问题如何分析?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/777623

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1