【数据存储】大端存储||小端存储(超详细解析,小白一看就懂!!!)

2024-03-05 18:44

本文主要是介绍【数据存储】大端存储||小端存储(超详细解析,小白一看就懂!!!),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、前言

二、什么是低地址、高地址 ?

三、什么是数据的高位和低位 ?

 四、什么是大小端存储?

🍉 小端存储详解

 🍒 大端存储详解

五、为什么会有大小端存储?

 🍍大端存储的优点

🥝小端存储的缺点 

 六、实例详解

 七、面试题

八、共勉 


一、前言

        大小端存储是计算机存储的一个设计概念,涉及了高地址和低地址数据的高位和低位等概念,所以在理解大小端存储之前,需要知道什么是高地址和低地址,什么是数据的高位和低位,这样才能更好的理解大小端存储。

二、什么是低地址、高地址 ?

为了便于管理存储地址,给地址进行编号,值较大的地址是高地址,值较小的地址是低地址 

 ✨注意:计算机读数据永远是从低地址开始的!!!

三、什么是数据的高位和低位 ?

数据的高位是数据的左边位置的数,数据的低位是数据右边位置的数数据的高位和低位又称高字节和低字节。

 四、什么是大小端存储?

大端存储,是将数据的低位字节放到高地址处,高位字节放到低地址处。

小端存储,是将数据的低位字节放到低地址处,高位字节放到高地址处。

大端存储和小端存储的区别是,低位字节放在高地址还是什么是低地址?大端存储的特点是低位字节存放在高地址,小端存储的特点是低位字节存放在低地址,这样可以方便记忆。

🍉 小端存储详解

数据的低位放在低地址空间,数据的高位放在高地址空间
简记:小端就是低位对应低地址,高位对应高地址

 图例1:存放二进制数:1011-0100-1111-0110-1000-1100-0001-0101

 注意注意:我们在存放的时候是以一个存储单元为单位来存放,存储单元内部不需要再转变顺序啦!!

 注意一定一定是从低地址读起!!!我们知道这是小端存储,所以在读出来的时候会从低位开始放!!!


 图例2:存放十六进制数:2AB93584FE1C

       十六进制数每一位转化为二进制就是4位:2对应0010,A对应1010,以此类推。所以在存放的时候两个十六进制位就占用一个存储单元

  注意注意:一个字节为一个存储单元

 注意注意:计算机读数据永远是从低地址开始的!!!

 🍒 大端存储详解

 数据的高位放在低地址空间,数据的低位放在高地址空间

 简记:大端就是低位对应高地址,高位对应低地址

  图例1:存放二进制数:1011-0100-1111-0110-1000-1100-0001-0101

   读取数据:注意仍然是从低地址开始读,我们知道这是大端模式,当我们从0号地址读到1011-0100时,我们知道它是高位,所以放到高位的位置上去


 图例2:存放十六进制数:2A-B9-35-84-FE-1C

 读取数据:注意从低地址开始读取,读到的从高地址开始放!!!

五、为什么会有大小端存储?

 为什么会有大小端模式之分呢?
        这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8 bit。但是在C语言中除了8 bit的char之外,还有16 bit的short型,32 bit的long型(要看具体的编译器)。
        另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。

 ⭐例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11                      为高字节, 0x22 为低字节。
    对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高地址中,即 0x0011 中。
           小端模式,刚好相反。

       我们常用的 X86 结构是小端模式,而 KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。

 🍍大端存储的优点

符号位在所表示的数据的内存的第一个字节中,便于快速判断数据的正负和大小 

🥝小端存储的缺点 

 1.CPU做数值运算时从内存中按顺序依次从低位到高位取数据进行运算,直到最后刷新最高位的符号位,这样的运算方式会更高效

2.内存的低地址处存放低字节,所以在强制转换数据时不需要调整字节的内容

 六、实例详解

#include<stdio.h>
int main()
{int a = 0x11223344;short b = 0x5566;return 0;
}

我们先来看16进制的数据0x112233440x5566
我们知道,1个十六进制位是4个bit位,2个十六进制位就是8个bit位,也就是1个字节,那0x11223344是8个十六进制位,也就是4个字节,0x5566就是2个字节。a和b都是大于1个字节,放在内存中就有存储先后的问题。-----  大小端存储
那么具体怎么布局的呢,我们以0x11223344和0x5566为例来看看。

 以下编译器为vs2022
a的内存:

 b的内存:

 比如a我们可以看到,数据在内存中是顺着存的,即数据的低位保存在内存的低地址中,b同理,说明这个编译器里的存储模式为小端存储模式
我们同时也可以看到,整型数据在内存中存储,是以字节为单位在布局它的顺序的。

 七、面试题

 百度2015年系统工程师笔试题:
 请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。(10分)

 以刚才的0x11223344为例,如果是大端存储模式,那第一个字节里存放的就是11;如果是小端存储模式,那第一个字节里存放的就是44。
我们换一组简单的数据来表示
int a=1;//即0x00000001
如果按照大端存储模式,第一个字节里存的是00

 如果按照小端存储模式,第一个字节里存的就是01

 我们知道,如果我们拿到一个整型的地址,即指针的类型为int*,对它进行解引用,那么就向后访问4个字节,如果指针的类型是char*类型的话,那么就只用访问一个字节。
按这个思路,我们用代码来实现一下

int main()
{int a = 1;// 注意 :读取数据永远都是从低地址开始//此时*p取出的就是第一个字节里的数据 ----- 低地址的数据char* p = (char*)&a;if (*p == 1){printf("小端\n");}else{printf("大端\n");}return 0;
}

 先来看这行代码char* p=(char*)&a;
&a的类型本来应该是int*,但我们要利用char*指针,所以对&a强制类型转换。
if (*p == 1)这行,此时*p取出的就是第一个字节里的数据。如果取出的是1,说明是小端存储,如果取出的是0,说明是大端存储。

八、共勉 

以下就是我对【数据存储】大端存储||小端存储的理解,如果有不懂和发现问题的小伙伴,请在评论区说出来哦,同时我还会继续更新对结构体内存对齐的理解,请持续关注我哦!!!!!    

 

这篇关于【数据存储】大端存储||小端存储(超详细解析,小白一看就懂!!!)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/777457

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数