嵌入式C语言使用低通滤波、高通滤波、互补滤波算法

2024-03-05 14:20

本文主要是介绍嵌入式C语言使用低通滤波、高通滤波、互补滤波算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、一阶低通滤波算法
    • 1.1 公式
    • 1.2 C代码
  • 二、一阶高通滤波算法
  • 2.1 公式
  • 2.2 C代码
  • 三、互补滤波算法
    • 3.1 前言
    • 3.2 公式
    • 3.2 C代码

一、一阶低通滤波算法

  低通滤波(Low Pass Filter)用于从一个信号中去除高于某个频率的成分。它的基本原理是,信号中高于某个频率的成分在信号传输或接收过程中会发生衰减,而低于该频率的成分则不受影响。因此,通过将信号通过一个低通滤波器,可以去除高频噪声,保留信号中的低频成分。

  一阶低通滤波器是低通滤波的一阶离散形式,用于滤除输入信号中的高频分量,只保留低频分量。它通过减弱高频部分的幅度,从而实现对信号的平滑处理。一阶低通滤波器的基本原理涉及限制信号的变化速率,对快速变化的信号进行衰减,而对缓慢变化的信号保留。

  一阶低通滤波的形式与一阶滞后滤波完全相同。倒不如说一阶滞后滤波其实就是一阶低通滤波,只不过当该滤波器用于不同的作用时,我们将其冠以了不同的称呼。

1.1 公式

Y k = A X k + ( 1 − A ) Y k − 1 Y_k = AX_k + (1-A)Y_{k-1} Yk=AXk+(1A)Yk1
其中
A = 1 1 + 1 2 π f c T A = \frac{1}{1+\frac{1}{2\pi f_cT}} A=1+2πfcT11

Y k Y_k Yk :输出
Y k − 1 Y_{k-1} Yk1 :上一个输出
X k X_k Xk :输入
f c f_c fc :截至频率
T T T :采样周期

  在这个方程中, A A A 越小,时间常数越大,低通滤波器的截止频率就越低,对高频部分的抑制效果就越强。
一阶低通滤波器常用于需要平滑信号或去除高频噪声的应用场景。它们在信号处理、通信系统、控制系统等领域都有广泛的应用。

1.2 C代码

#include <stdio.h>// 定义一阶低通滤波器结构体
typedef struct {float alpha;           // 时间常数float previous_output; // 上一时刻的输出
} LowPassFilter;// 初始化滤波器
void initializeFilter(LowPassFilter* filter, float alpha) {filter->alpha = alpha;filter->previous_output = 0.0;
}// 一阶低通滤波函数
float filterValue(LowPassFilter* filter, float input) {// 计算输出float output = (1.0 - filter->alpha) * filter->previous_output + filter->alpha * input;// 更新上一次的输出filter->previous_output = output;return output;
}int main() {// 初始化滤波器,设置时间常数为0.2float alpha = 0.2;LowPassFilter myFilter;initializeFilter(&myFilter, alpha);// 使用示例float inputValues[] = {10.0, 15.0, 20.0, 18.0, 22.0, 25.0, 17.0};int numValues = sizeof(inputValues) / sizeof(inputValues[0]);printf("Input Values:\tFiltered Values:\n");for (int i = 0; i < numValues; ++i) {float filteredValue = filterValue(&myFilter, inputValues[i]);printf("%.2f\t\t%.2f\n", inputValues[i], filteredValue);}return 0;
}

  MedianAverageFilter 结构体用于存储滤波器的状态信息,包括窗口和平均滤波的权重系数。initializeFilter 函数用于初始化滤波器,而 filterValue 函数实现了中位值平均滤波的操作。在 main 函数中,我们创建了一个 MedianAverageFilter 实例,并对一系列输入值进行滤波处理,输出滤波后的值。

二、一阶高通滤波算法

  高通滤波(High Pass Filter)可以滤除信号中的低频部分,保留高频部分。高通滤波器的应用非常广泛,例如在音频处理中可以用来去除低频噪声、在图像处理中可以用来增强图像的边缘等。
  高通滤波算法的基本思想是:将信号分解成高频和低频两部分,去掉低频部分,只保留高频部分。高通滤波的实现可以通过频域方法和时域方法两种方式实现。
  频域方法是将信号转换到频域进行处理,常用的有傅里叶变换和小波变换等。通过滤波器在频域中滤除低频成分,然后再将信号转换回时域。
  时域方法则是通过差分等方式,直接在时域中滤除低频部分。
  一阶高通滤波器是高通滤波的一阶差分形式,用于滤除输入信号中的低频分量,同时保留高频分量。高通滤波器的作用是弱化或消除信号中的低频成分,从而突出高频变化或忽略缓慢变化的部分。一阶高通滤波器的设计原理涉及对低频分量进行衰减,保留高频部分。

2.1 公式

一阶高通滤波器的差分方程一般表示为:
Y k = A Y k − 1 + A ( X k − X k − 1 ) Y_k = AY_{k-1}+A(X_k-X_{k-1}) Yk=AYk1+A(XkXk1)
其中
A = 1 1 + 1 2 π f c T A = \frac{1}{1+\frac{1}{2\pi f_cT}} A=1+2πfcT11
Y k Y_k Yk :输出
Y k − 1 Y_{k-1} Yk1 :上一个输出
X k X_k Xk :输入
X k − 1 X_{k-1} Xk1 :上一个输入
f c f_c fc :截至频率
T T T :采样周期

  在这个方程中, A A A 越小,时间常数越大,高通滤波器的截止频率就越低,对低频部分的抑制效果就越弱。
  一阶高通滤波器通常应用于需要突出信号中快速变化或高频成分的应用场景。在图像处理、音频处理、传感器信号处理等领域,高通滤波器被广泛用于去除低频噪声或趋势成分。

2.2 C代码

#include <stdio.h>// 定义一阶高通滤波器结构体
typedef struct {float alpha;           // 时间常数float previous_output; // 上一时刻的输出
} HighPassFilter;// 初始化滤波器
void initializeFilter(HighPassFilter* filter, float alpha) {filter->alpha = alpha;filter->previous_output = 0.0;
}// 一阶高通滤波函数
float filterValue(HighPassFilter* filter, float input) {// 计算输出float output = filter->alpha * (input - filter->previous_output) + filter->previous_output;// 更新上一次的输出filter->previous_output = output;return output;
}int main() {// 初始化滤波器,设置时间常数为0.1float alpha = 0.1;HighPassFilter myFilter;initializeFilter(&myFilter, alpha);// 使用示例float inputValues[] = {10.0, 15.0, 20.0, 18.0, 22.0, 25.0, 17.0};int numValues = sizeof(inputValues) / sizeof(inputValues[0]);printf("Input Values:\tFiltered Values:\n");for (int i = 0; i < numValues; ++i) {float filteredValue = filterValue(&myFilter, inputValues[i]);printf("%.2f\t\t%.2f\n", inputValues[i], filteredValue);}return 0;
}

   HighPassFilter 结构体用于存储滤波器的状态信息,包括时间常数和上一次的输出。initializeFilter 函数用于初始化滤波器,而 filterValue 函数实现了一阶高通滤波的操作。在 main 函数中,我们创建了一个 HighPassFilter 实例,并对一系列输入值进行滤波处理,输出滤波后的值。

三、互补滤波算法

   你上网看了无数的互补滤波解读教程,始终不理解,为什么算法原理和代码可以没有任何关系?,那这个算法是怎么写成代码的呢?
我直接给出结论吧,造成这样的原因是因为:
   网上大部分互补滤波原理介绍的是传统的 线性互补滤波(Classical Complementary Filters), 而Mahony用来算解姿态的滤波是经过改进的 非线性互补滤波,
   非线性互补滤波里有两种形式:直接互补滤波(Direct complementary filter)和无源互补滤波(Passive complementary filter), 你在网上看到的开源代码都是基于无源互补滤波器的显式误差版本-显式互补滤波器(Explicit complementary filter).
你拿着两个完全不一样的东西,那肯定对应不上呀。

3.1 前言

   一般的互补公式用在六轴传感器的数据融合,其他的行业和领域现在还没有涉及到,这里只说六轴传感器的融合。以后遇到融合的话,可以直接用。

3.2 公式

y n = K θ n + ( 1 − K ) [ y n − 1 + Δ t Ω n ] y_n = K\theta_n + (1-K)[y_{n-1}+ \Delta t \Omega_n] yn=Kθn+(1K)[yn1+ΔtΩn]
y n y_n yn:输出角度
θ n \theta_n θn:加速度的角度
Δ t \Delta t Δt:采样周期
Ω n \Omega_n Ωn:陀螺仪角度
y n − 1 y_{n-1} yn1:上一次输出角度

可以看出,互补滤波就是通过加速度计获取的角度对陀螺仪积分的角度进行校准,从而积分的角度逐步跟踪到加速度传感器所得到的角度。K1 与1-K1 是对这两个角度取不同的权重,可以表示我们对不同数据的信任程度。

3.2 C代码

/****************************** BEFIN ********************************
**
**@Name       : Complementary_Filter_x
**@Brief      : 一阶互补滤波   
**@Param angle_m: 加速度算出的角度 
**		gyro_m: 陀螺仪的角速度
**@Return     : None
**@Author     : @mayuxin
**@Data	      : 2022-06-04
******************************** END *********************************/
float Complementary_Filter_x(float angle_m, float gyro_m)
{static float angle;float K1 =0.02; angle = K1 * angle_m+ (1-K1) * (angle + gyro_m * dt);return angle;
}

文章是自己总结而记录,有些知识点没说明白的,请各位看官多多提意见,多多交流,欢迎大家留言
如果技术交流可以加以下群,方便沟通
QQ群:370278903
点击链接加入群聊【蜡笔小芯的嵌入式交流群】
![])

这篇关于嵌入式C语言使用低通滤波、高通滤波、互补滤波算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/776793

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)