深度学习-Pytorch实现经典VGGNet网络

2024-03-05 11:04

本文主要是介绍深度学习-Pytorch实现经典VGGNet网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习-Pytorch实现经典VGGNet网络

深度学习中,经典网络引领一波又一波的技术革命,从LetNet到当前最火的GPT所用的Transformer,它们把AI技术不断推向高潮。2012年AlexNet大放异彩,它把深度学习技术引领第一个高峰,打开人们的视野。

用pytorch构建CNN经典网络模型VGGNet,还可以用数据进行训练模型,得到一个优化的模型。

深度学习算法

深度学习-回顾经典AlexNet网络:山高我为峰-CSDN博客

深度学习-CNN网络改进版LetNet5-CSDN博客

深度学习-回顾CNN经典网络LetNet-CSDN博客

GPT实战系列-如何用自己数据微调ChatGLM2模型训练_pytorch 训练chatglm2 模型-CSDN博客

VGGNet概述

2014年,牛津大学计算机视觉组(Visual Geometry Group)和DeepMind公司一起研发了新的卷积神经网络,并命名为VGGNet。VGGNet是比AlexNet更深的深度卷积神经网络,该模型获得了2014年ILSVRC竞赛的第二名。

网络结构

VGG 的结构与 AlexNet 类似,区别是深度更深,但形式上更加简单。VGG由5层卷积层、3层全连接层、1层softmax输出层构成,层与层之间使用maxpool(最大化池)分开,所有隐藏层的激活单元都采用ReLU函数。
VGG结构图

事实上,作者设计了6种网络结构,以下以常用的VGG16 D为例。

输入图像3通道分辨率:224x224x3

结构:

9层:图像输入后,5个卷积层,3个全连接层,1个输出层;

(1)C1:3x3 —>64个conv 3x3 --> ReLU–>64个conv 3x3–> ReLU --> 输出64个224×224特征图–> MaxPool 2x2 --> 输出 64个112x112;

(2)C2:3x3 —>128个conv 3x3 --> ReLU–>128个conv 3x3–> ReLU --> 输出128个112×112特征图–> MaxPool 2x2 --> 输出 128个56x56;

(3)C3:3x3 —>256个conv 3x3 --> ReLU–>256个conv 3x3–> ReLU --> 256个conv 3x3–> ReLU -->输出256个56×56特征图–> MaxPool 2x2 --> 输出 256个28x28;

(4)C4:3x3 —>512个conv 3x3 --> ReLU–>512个conv 3x3–> ReLU --> 512个conv 3x3–> ReLU -->输出512个28×28特征图–> MaxPool 2x2 --> 输出 512个14x14;

(5)C5:3x3 —>512个conv 3x3 --> ReLU–>512个conv 3x3–> ReLU --> 512个conv 3x3–> ReLU -->输出512个14×14特征图–> MaxPool 2x2 --> 输出 512个7x7;

(6)FC6 ---->7x7x512 展平77512一维向量–>输出4096个1x1–> ReLU --> Dropout;

(7)FC7 ----> 输入1x1x4096,输出1x1x4096–> ReLU --> Dropout

(8)FC8 ----> 输入1x1x4096,输出1x1x1000

(9)输出层—> 输入1x1x1000–>softmax -->输出 1000分类

整个VGGNet 16 D网络包含的参数数量为 138M个参数。

在这里插入图片描述

优势与不足

优势:采用小卷积核conv 3x3,增加卷积子层,网络深度从11层到19层,Maxpool 核缩小为2x2,特征通道更宽,全连接卷积,图像尺寸扩大224x224x3。

Pytorch实现

以下便是使用Pytorch实现的经典网络结构VGGNet16

class VGGNet16(nn.Module):def __init__(self, num_classes, grayscale=False): """num_classes: 分类的数量grayscale:是否为灰度图"""super(VGGNet, self).__init__()self.grayscale = grayscaleself.num_classes = num_classesif self.grayscale: # 可以适用单通道和三通道的图像in_channels = 1else:in_channels = 3# 卷积神经网络C1 = nn.Sequential(nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.MaxPool2d(kernel_size=2, stride=2))C2 = nn.Sequential(nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.MaxPool2d(kernel_size=2, stride=2))C3 = nn.Sequential(nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.MaxPool2d(kernel_size=2, stride=2))C4 = nn.Sequential(nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.MaxPool2d(kernel_size=2, stride=2))C5 = nn.Sequential(nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.MaxPool2d(kernel_size=2, stride=2))self.features = nn.Sequential(C1,C2,C3,C4,C5)# 分类器self.classifier = nn.Sequential(nn.Linear(7*7*512, 4096),nn.ReLU(),nn.Dropout(),nn.Linear(4096*1*1, 4096),nn.ReLU()nn.Dropout()nn.Linear(4096, 1000))def forward(self, x):x = self.features(x) # 输出 特征图x = torch.flatten(x, 1) # 展平 logits = self.classifier(x) # 输出 probas = F.softmax(logits, dim=1)return logits, probas

大家可以和前面的对照差异,也可以一窥DeepLearning技术的突破点。

在VGGNet 是一大创举,DeepMind团队更闻名的是在围棋开创一片天地,AlphaGo风靡一时,把人工智能推向又一个高潮,CNN网络引领的深度学习蓬勃发展,造就人工智能技术革命的起点。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End

深度学习

Caffe笔记:python图像识别与分类_python 怎么识别 caffe-CSDN博客

深度学习-Pytorch同时使用Numpy和Tensors各自特效-CSDN博客

深度学习-Pytorch运算的基本数据类型_pytorch支持的训练数据类型-CSDN博客

深度学习-Pytorch如何保存和加载模型

深度学习-Pytorch如何构建和训练模型-CSDN博客

深度学习-Pytorch数据集构造和分批加载-CSDN博客

Python Faster R-CNN 安装配置记录_attributeerror: has no attribute 'smooth_l1_loss-CSDN博客

经典算法-遗传算法的python实现

经典算法-模拟退火算法的python实现

经典算法-粒子群算法的python实现-CSDN博客

GPT专栏文章:

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

这篇关于深度学习-Pytorch实现经典VGGNet网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/776305

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal