【海贼王的数据航海:利用数据结构成为数据海洋的霸主】链表—双向链表

本文主要是介绍【海贼王的数据航海:利用数据结构成为数据海洋的霸主】链表—双向链表,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

往期

1 -> 带头+双向+循环链表(双链表)

1.1 -> 接口声明

1.2 -> 接口实现

1.2.1 -> 双向链表初始化

1.2.2 -> 动态申请一个结点

1.2.3 -> 双向链表销毁

1.2.4 -> 双向链表打印

1.2.5 -> 双向链表判空

1.2.6 -> 双向链表尾插

1.2.7 -> 双向链表尾删

1.2.8 -> 双向链表头插

1.2.9 -> 双向链表头删

1.2.10 -> 双向链表查找

1.2.11 ->  双向链表在pos的前面进行插入

1.2.12 -> 双向链表删除pos位置的节点

2 -> 顺序表和链表的区别

3 -> 完整代码

3.1 -> List.c

3.2 -> List.h

3.3 -> Test.c


往期

链表-单链表

1 -> 带头+双向+循环链表(双链表)

1.1 -> 接口声明

#pragma once#define  _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <stdbool.h>// 带头+双向+循环链表增删查改实现
typedef int LTDataType;typedef struct LTNode
{LTDataType data;struct LTNode* next;struct LTNode* prev;
}LTNode;// 双向链表初始化
LTNode* LTInit();// 动态申请一个结点
LTNode* BuyLTNode(LTDataType x);// 双向链表销毁
void LTDestory(LTNode* phead);// 双向链表打印
void LTPrint(LTNode* phead);// 双向链表判空
bool LTEmpty(LTNode* phead);// 双向链表尾插
void LTPushBack(LTNode* phead, LTDataType x);// 双向链表尾删
void LTPopBack(LTNode* phead);// 双向链表头插
void LTPushFront(LTNode* phead, LTDataType x);// 双向链表头删
void LTPopFront(LTNode* phead);// 双向链表查找
LTNode* LTFind(LTNode* phead, LTDataType x);// 双向链表在pos的前面进行插入
void LTInsert(LTNode* pos, LTDataType x);// 双向链表删除pos位置的节点
void LTErase(LTNode* pos);

1.2 -> 接口实现

1.2.1 -> 双向链表初始化

// 双向链表初始化
LTNode* LTInit()
{LTNode* phead = BuyLTNode(-1);phead->next = phead;phead->prev = phead;return phead;
}

1.2.2 -> 动态申请一个结点

// 动态申请一个结点
LTNode* BuyLTNode(LTDataType x)
{LTNode* newnode = (LTNode*)malloc(sizeof(LTNode));if (newnode == NULL){perror("malloc fail");return NULL;}newnode->data = x;newnode->next = NULL;newnode->prev = NULL;return newnode;
}

1.2.3 -> 双向链表销毁

// 双向链表销毁
void LTDestory(LTNode* phead)
{assert(phead);LTNode* cur = phead->next;while (cur != phead){LTNode* next = cur->next;free(cur);cur = next;}free(phead);
}

1.2.4 -> 双向链表打印

// 双向链表打印
void LTPrint(LTNode* phead)
{assert(phead);printf("guard<==>");LTNode* cur = phead->next;while (cur != phead){printf("%d<==>", cur->data);cur = cur->next;}printf("\n");
}

1.2.5 -> 双向链表判空

// 双向链表判空
bool LTEmpty(LTNode* phead)
{assert(phead);return phead->next == phead;
}

1.2.6 -> 双向链表尾插

// 双向链表尾插
void LTPushBack(LTNode* phead, LTDataType x)
{assert(phead);LTNode* tail = phead->prev;LTNode* newnode = BuyLTNode(x);tail->next = newnode;newnode->prev = tail;newnode->next = phead;phead->prev = newnode;// 复用// LTInsert(phead, x);
}
// 尾插测试
void Test1()
{LTNode* plist = LTInit();LTPushBack(plist, 1);LTPushBack(plist, 2);LTPushBack(plist, 3);LTPushBack(plist, 4);LTPushBack(plist, 5);LTPrint(plist);LTDestory(plist);plist = NULL;
}

 

1.2.7 -> 双向链表尾删

// 双向链表尾删
void LTPopBack(LTNode* phead)
{assert(phead);assert(!LTEmpty(phead));LTNode* tail = phead->prev;LTNode* tailPrev = tail->prev;free(tail);tailPrev->next = phead;phead->prev = tailPrev;// 复用// LTErase(phead->prev);
}
// 尾删测试
void Test2()
{LTNode* plist = LTInit();LTPushBack(plist, 1);LTPushBack(plist, 2);LTPushBack(plist, 3);LTPushBack(plist, 4);LTPushBack(plist, 5);LTPrint(plist);LTPopBack(plist);LTPrint(plist);LTPopBack(plist);LTPrint(plist);LTPopBack(plist);LTPrint(plist);LTPopBack(plist);LTPrint(plist);LTPopBack(plist);LTPrint(plist);LTDestory(plist);plist = NULL;
}

1.2.8 -> 双向链表头插

// 双向链表头插
void LTPushFront(LTNode* phead, LTDataType x)
{assert(phead);LTNode* newnode = BuyLTNode(x);newnode->next = phead->next;phead->next->prev = newnode;phead->next = newnode;newnode->prev = phead;// 复用// LTInsert(phead->next, x);
}
// 头插测试
void Test3()
{LTNode* plist = LTInit();LTPushFront(plist, 1);LTPushFront(plist, 2);LTPushFront(plist, 3);LTPushFront(plist, 4);LTPushFront(plist, 5);LTPrint(plist);LTDestory(plist);plist = NULL;
}

1.2.9 -> 双向链表头删

// 双向链表头删
void LTPopFront(LTNode* phead)
{assert(phead);assert(!LTEmpty(phead));LTNode* first = phead->next;LTNode* second = first->next;phead->next = second;second->prev = phead;free(first);// 复用// LTErase(phead->next);
}
// 头删测试
void Test4()
{LTNode* plist = LTInit();LTPushBack(plist, 1);LTPushBack(plist, 2);LTPushBack(plist, 3);LTPushBack(plist, 4);LTPushBack(plist, 5);LTPrint(plist);LTPopFront(plist);LTPrint(plist);LTPopFront(plist);LTPrint(plist);LTPopFront(plist);LTPrint(plist);LTPopFront(plist);LTPrint(plist);LTPopFront(plist);LTPrint(plist);LTDestory(plist);plist = NULL;
}

1.2.10 -> 双向链表查找

// 双向链表查找
LTNode* LTFind(LTNode* phead, LTDataType x)
{assert(phead);LTNode* cur = phead->next;while (cur != phead){if (cur->data == x){return cur;}cur = cur->next;}return NULL;
}

1.2.11 ->  双向链表在pos的前面进行插入

// 双向链表在pos的前面进行插入
void LTInsert(LTNode* pos, LTDataType x)
{assert(pos);LTNode* prev = pos->prev;LTNode* newnode = BuyLTNode(x);prev->next = newnode;newnode->prev = prev;newnode->next = pos;pos->prev = newnode;
}
// 查找插入测试
void Test5()
{LTNode* plist = LTInit();LTPushBack(plist, 1);LTPushBack(plist, 2);LTPushBack(plist, 3);LTPushBack(plist, 4);LTPushBack(plist, 5);LTPrint(plist);LTNode* pos = LTFind(plist, 3);if (pos)LTInsert(pos, 99);LTPrint(plist);LTDestory(plist);plist = NULL;
}

1.2.12 -> 双向链表删除pos位置的节点

// 双向链表删除pos位置的节点
void LTErase(LTNode* pos)
{assert(pos);LTNode* posPrev = pos->prev;LTNode* posNext = pos->next;posPrev->next = posNext;posNext->prev = posPrev;free(pos);
}

2 -> 顺序表和链表的区别

不同点顺序表链表
存储空间上物理上一定连续逻辑上连续,但物理上不一定连续
随机访问支持O(1)不支持:O(N)
任意位置插入或者删除元素可能需要搬移元素,效率低O(N)只需修改指针指向
插入动态顺序表,空间不够时需要扩容没有容量的概念
应用场景元素高效存储+频繁访问任意位置插入和删除频繁
缓存利用率

注:缓存利用率参考存储体系结构以及局部原理性。

3 -> 完整代码

3.1 -> List.c

#include "List.h"// 双向链表初始化
LTNode* LTInit()
{LTNode* phead = BuyLTNode(-1);phead->next = phead;phead->prev = phead;return phead;
}// 动态申请一个结点
LTNode* BuyLTNode(LTDataType x)
{LTNode* newnode = (LTNode*)malloc(sizeof(LTNode));if (newnode == NULL){perror("malloc fail");return NULL;}newnode->data = x;newnode->next = NULL;newnode->prev = NULL;return newnode;
}// 双向链表销毁
void LTDestory(LTNode* phead)
{assert(phead);LTNode* cur = phead->next;while (cur != phead){LTNode* next = cur->next;free(cur);cur = next;}free(phead);
}// 双向链表打印
void LTPrint(LTNode* phead)
{assert(phead);printf("guard<==>");LTNode* cur = phead->next;while (cur != phead){printf("%d<==>", cur->data);cur = cur->next;}printf("\n");
}// 双向链表判空
bool LTEmpty(LTNode* phead)
{assert(phead);return phead->next == phead;
}// 双向链表尾插
void LTPushBack(LTNode* phead, LTDataType x)
{assert(phead);LTNode* tail = phead->prev;LTNode* newnode = BuyLTNode(x);tail->next = newnode;newnode->prev = tail;newnode->next = phead;phead->prev = newnode;// 复用// LTInsert(phead, x);
}// 双向链表尾删
void LTPopBack(LTNode* phead)
{assert(phead);assert(!LTEmpty(phead));LTNode* tail = phead->prev;LTNode* tailPrev = tail->prev;free(tail);tailPrev->next = phead;phead->prev = tailPrev;// 复用// LTErase(phead->prev);
}// 双向链表头插
void LTPushFront(LTNode* phead, LTDataType x)
{assert(phead);LTNode* newnode = BuyLTNode(x);newnode->next = phead->next;phead->next->prev = newnode;phead->next = newnode;newnode->prev = phead;// 复用// LTInsert(phead->next, x);
}// 双向链表头删
void LTPopFront(LTNode* phead)
{assert(phead);assert(!LTEmpty(phead));LTNode* first = phead->next;LTNode* second = first->next;phead->next = second;second->prev = phead;free(first);// 复用// LTErase(phead->next);
}// 双向链表查找
LTNode* LTFind(LTNode* phead, LTDataType x)
{assert(phead);LTNode* cur = phead->next;while (cur != phead){if (cur->data == x){return cur;}cur = cur->next;}return NULL;
}// 双向链表在pos的前面进行插入
void LTInsert(LTNode* pos, LTDataType x)
{assert(pos);LTNode* prev = pos->prev;LTNode* newnode = BuyLTNode(x);prev->next = newnode;newnode->prev = prev;newnode->next = pos;pos->prev = newnode;
}// 双向链表删除pos位置的节点
void LTErase(LTNode* pos)
{assert(pos);LTNode* posPrev = pos->prev;LTNode* posNext = pos->next;posPrev->next = posNext;posNext->prev = posPrev;free(pos);
}

3.2 -> List.h

#pragma once#define  _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <stdbool.h>// 带头+双向+循环链表增删查改实现
typedef int LTDataType;typedef struct LTNode
{LTDataType data;struct LTNode* next;struct LTNode* prev;
}LTNode;// 双向链表初始化
LTNode* LTInit();// 动态申请一个结点
LTNode* BuyLTNode(LTDataType x);// 双向链表销毁
void LTDestory(LTNode* phead);// 双向链表打印
void LTPrint(LTNode* phead);// 双向链表判空
bool LTEmpty(LTNode* phead);// 双向链表尾插
void LTPushBack(LTNode* phead, LTDataType x);// 双向链表尾删
void LTPopBack(LTNode* phead);// 双向链表头插
void LTPushFront(LTNode* phead, LTDataType x);// 双向链表头删
void LTPopFront(LTNode* phead);// 双向链表查找
LTNode* LTFind(LTNode* phead, LTDataType x);// 双向链表在pos的前面进行插入
void LTInsert(LTNode* pos, LTDataType x);// 双向链表删除pos位置的节点
void LTErase(LTNode* pos);

3.3 -> Test.c

#include "List.h"// 尾插测试
void Test1()
{LTNode* plist = LTInit();LTPushBack(plist, 1);LTPushBack(plist, 2);LTPushBack(plist, 3);LTPushBack(plist, 4);LTPushBack(plist, 5);LTPrint(plist);LTDestory(plist);plist = NULL;
}// 尾删测试
void Test2()
{LTNode* plist = LTInit();LTPushBack(plist, 1);LTPushBack(plist, 2);LTPushBack(plist, 3);LTPushBack(plist, 4);LTPushBack(plist, 5);LTPrint(plist);LTPopBack(plist);LTPrint(plist);LTPopBack(plist);LTPrint(plist);LTPopBack(plist);LTPrint(plist);LTPopBack(plist);LTPrint(plist);LTPopBack(plist);LTPrint(plist);LTDestory(plist);plist = NULL;
}// 头插测试
void Test3()
{LTNode* plist = LTInit();LTPushFront(plist, 1);LTPushFront(plist, 2);LTPushFront(plist, 3);LTPushFront(plist, 4);LTPushFront(plist, 5);LTPrint(plist);LTDestory(plist);plist = NULL;
}// 头删测试
void Test4()
{LTNode* plist = LTInit();LTPushBack(plist, 1);LTPushBack(plist, 2);LTPushBack(plist, 3);LTPushBack(plist, 4);LTPushBack(plist, 5);LTPrint(plist);LTPopFront(plist);LTPrint(plist);LTPopFront(plist);LTPrint(plist);LTPopFront(plist);LTPrint(plist);LTPopFront(plist);LTPrint(plist);LTPopFront(plist);LTPrint(plist);LTDestory(plist);plist = NULL;
}// 查找插入测试
void Test5()
{LTNode* plist = LTInit();LTPushBack(plist, 1);LTPushBack(plist, 2);LTPushBack(plist, 3);LTPushBack(plist, 4);LTPushBack(plist, 5);LTPrint(plist);LTNode* pos = LTFind(plist, 3);if (pos)LTInsert(pos, 99);LTPrint(plist);LTDestory(plist);plist = NULL;
}int main()
{return 0;
}

感谢大佬们支持!!!

互三啦!!!

这篇关于【海贼王的数据航海:利用数据结构成为数据海洋的霸主】链表—双向链表的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/774810

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro