YOLOv9独家原创改进|加入幽灵卷积Ghost Convolution模块,轻量化!

本文主要是介绍YOLOv9独家原创改进|加入幽灵卷积Ghost Convolution模块,轻量化!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


专栏介绍:YOLOv9改进系列 | 包含深度学习最新创新,主力高效涨点!!!


一、论文摘要

        由于内存和计算资源有限,在嵌入式设备上部署卷积神经网络是困难的。特征图中的冗余是那些成功的细胞神经网络的一个重要特征,但在神经结构设计中很少进行研究。本文提出了一种新的Ghost模块,通过少量的计算生成更多的特征图。基于一组内在特征图,我们以低廉的成本应用一系列线性变换来生成许多重影特征图,这些重影特征图可充分揭示内在特征背后的信息。所提出的Ghost模块可以作为即插即用组件来升级现有的卷积神经网络。Ghost瓶颈被设计为堆叠Ghost模块,然后可以轻松地建立轻量级GhostNet。

适用检测目标:   轻量化或移动端部署


二、Ghost Conv模块详解

《GhostNet: More Features from Cheap Operations》

        论文地址:  https://arxiv.org/abs/1911.11907

 2.1 模块简介

        Ghost Conv的主要思想:  通过一系列线性变换,以很小的计算量从原始特征发掘所需信息的“Ghost”特征图(Ghost feature maps)

 总结: 一种类似残差的模块

Ghost Conv模块的原理图


三、Ghost Conv模块使用教程

3.1 Ghost Conv模块的代码


class GhostConv(nn.Module):"""Ghost Convolution https://github.com/huawei-noah/ghostnet."""def __init__(self, c1, c2, k=1, s=1, g=1, act=True):"""Initializes the GhostConv object with input channels, output channels, kernel size, stride, groups andactivation."""super().__init__()c_ = c2 // 2  # hidden channelsself.cv1 = Conv(c1, c_, k, s, None, g, act=act)self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)def forward(self, x):"""Forward propagation through a Ghost Bottleneck layer with skip connection."""y = self.cv1(x)return torch.cat((y, self.cv2(y)), 1)

3.2 在YOlO v9中的添加教程

阅读YOLOv9添加模块教程或使用下文操作

        1. 将YOLOv9工程中models下common.py文件中增加模块的代码。

         2. 将YOLOv9工程中models下yolo.py文件中的第718行(可能因版本变化而变化)增加以下代码。

            RepNCSPELAN4, SPPELAN, GhostConv}:

3.3 运行配置文件

# YOLOv9
# Powered bu https://blog.csdn.net/StopAndGoyyy
# parameters
nc: 80  # number of classes
depth_multiple: 1  # model depth multiple
width_multiple: 1  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()# anchors
anchors: 3# YOLOv9 backbone
backbone:[[-1, 1, Silence, []],  # conv down[-1, 1, Conv, [64, 3, 2]],  # 1-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 2-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3# avg-conv down[-1, 1, ADown, [256]],  # 4-P3/8# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5# avg-conv down[-1, 1, ADown, [512]],  # 6-P4/16# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7# avg-conv down[-1, 1, ADown, [512]],  # 8-P5/32# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9]# YOLOv9 head
head:[# elan-spp block[-1, 1, SPPELAN, [512, 256]],  # 10# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 7], 1, Concat, [1]],  # cat backbone P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 5], 1, Concat, [1]],  # cat backbone P3# elan-2 block[-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 16 (P3/8-small)# avg-conv-down merge[-1, 1, ADown, [256]],[[-1, 13], 1, Concat, [1]],  # cat head P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 19 (P4/16-medium)# avg-conv-down merge[-1, 1, ADown, [512]],[[-1, 10], 1, Concat, [1]],  # cat head P5# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 22 (P5/32-large)# multi-level reversible auxiliary branch# routing[5, 1, CBLinear, [[256]]], # 23[7, 1, CBLinear, [[256, 512]]], # 24[9, 1, CBLinear, [[256, 512, 512]]], # 25# conv down[0, 1, Conv, [64, 3, 2]],  # 26-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 27-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 28# avg-conv down fuse[-1, 1, ADown, [256]],  # 29-P3/8[[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30  # elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 31# avg-conv down fuse[-1, 1, ADown, [512]],  # 32-P4/16[[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33 # elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 34# avg-conv down fuse[-1, 1, ADown, [512]],  # 35-P5/32[[25, -1], 1, CBFuse, [[2]]], # 36# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 37[-1, 1, GhostConv, [512, 3]],  # 38# detection head# detect[[31, 34, 38, 16, 19, 22], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)]

3.4 训练过程


欢迎关注!


这篇关于YOLOv9独家原创改进|加入幽灵卷积Ghost Convolution模块,轻量化!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/774743

相关文章

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

Python logging模块使用示例详解

《Pythonlogging模块使用示例详解》Python的logging模块是一个灵活且强大的日志记录工具,广泛应用于应用程序的调试、运行监控和问题排查,下面给大家介绍Pythonlogging模... 目录一、为什么使用 logging 模块?二、核心组件三、日志级别四、基本使用步骤五、快速配置(bas

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增

Python datetime 模块概述及应用场景

《Pythondatetime模块概述及应用场景》Python的datetime模块是标准库中用于处理日期和时间的核心模块,本文给大家介绍Pythondatetime模块概述及应用场景,感兴趣的朋... 目录一、python datetime 模块概述二、datetime 模块核心类解析三、日期时间格式化与

Python如何调用指定路径的模块

《Python如何调用指定路径的模块》要在Python中调用指定路径的模块,可以使用sys.path.append,importlib.util.spec_from_file_location和exe... 目录一、sys.path.append() 方法1. 方法简介2. 使用示例3. 注意事项二、imp

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo