模型部署 - BevFusion - (1) - 思路总结

2024-03-04 19:04

本文主要是介绍模型部署 - BevFusion - (1) - 思路总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

模型部署实践 - BevFusion

  • 思路总结
  • 一、网络结构 - 总结
    • 1.1、代码
    • 1.2、网络流程图
    • 1.3、模块大致梳理
  • 二、Onnx 的导出 -总体思路分析
  • 三、优化思路总结

学习 BevFusion 的部署,看了很多的资料,这篇博客进行总结和记录自己的实践

思路总结

对于一个模型我们要进行部署,一般有以下几个开发流程或思路:

  • PyTorch 转 ONNX 转 TRT
  • FP16 优化
  • cuda-graph 优化
  • INT8 量化优化
  • ONNX 模型层面优化
  • Pipeline 优化
  • 模型内深度优化

我们需要先快速的去了解网络,然后将其转换成 Onnx 和 Tensorrt,然后再去根据结果进行二次优化

一、网络结构 - 总结

1.1、代码

Pytorch 代码:https://github.com/mit-han-lab/bevfusion
CUDA-BEVFusion 部署代码:https://github.com/NVIDIA-AI-IOT/Lidar_AI_Solution/tree/master/

1.2、网络流程图

在这里插入图片描述

1.3、模块大致梳理

在这里插入图片描述

二、Onnx 的导出 -总体思路分析

在 CUDA-BEVFusion 的代码中一共有五个 onnx ,说明作者是分模块来导出 onnx 的。

模块onnx 名称
Cameracamera.backbone.onnx
Cameracamera.vtransform.onnx
Fusefuser.onnx
Lidarlidar.backbone.xyz.onnx
decoder + posthead.bbox.onnx
(1) 在 Camera 模块 中导出了两个 onnx,为什么要分两个 onnx 导出?

因为 bev_pool 中有个下采样的部分,会影响整个onnx的导出,所以才选择分开两个 onnx。第一个是backone相关的,第二个是bev_pool相关的

(2) Camera 的 backone 为什么选择了 Resnet50?

源代码的 backone 是选择了SwinTransform,但是由于 bev_pool 有大量的计算,并且SwinTransform含有大量的复杂计算,所以在部署的时候会选择 Resnet50,因为它结构简单,容易做量化且精度不会损失太大。

(3) 如何导出 bev_pool ?

有两种方式实现。

方法一: 做成 Plugin,但是这样太麻烦,所以不太推荐

方法二:使用核函数实现,分成三个部分(subclass机制

  • bev_pool之前用onnx;
  • bev_pool不导出onnx,用cuda核函数实现;
  • bev_pool后的 downsample使用 onnx
(4) lidar模块如何导出 onnx?

因为模块中包含 spconv ,pytorch不能直接导出onnx,所以使用 onnx.helper 自定义导出 onnx

(5) decoder部分为什么不能用int8?

因为模块中包含 transformer,并且Tensorrt推理中容易出现 NAN(这种情况极难解决)

三、优化思路总结

在这里插入图片描述

这篇关于模型部署 - BevFusion - (1) - 思路总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/774152

相关文章

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

MySQL基本查询示例总结

《MySQL基本查询示例总结》:本文主要介绍MySQL基本查询示例总结,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Create插入替换Retrieve(读取)select(确定列)where条件(确定行)null查询order by语句li

Web技术与Nginx网站环境部署教程

《Web技术与Nginx网站环境部署教程》:本文主要介绍Web技术与Nginx网站环境部署教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Web基础1.域名系统DNS2.Hosts文件3.DNS4.域名注册二.网页与html1.网页概述2.HTML概述3.

Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例

《Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例》本文介绍Nginx+Keepalived实现Web集群高可用负载均衡的部署与测试,涵盖架构设计、环境配置、健康检查、... 目录前言一、架构设计二、环境准备三、案例部署配置 前端 Keepalived配置 前端 Nginx

ubuntu如何部署Dify以及安装Docker? Dify安装部署指南

《ubuntu如何部署Dify以及安装Docker?Dify安装部署指南》Dify是一个开源的大模型应用开发平台,允许用户快速构建和部署基于大语言模型的应用,ubuntu如何部署Dify呢?详细请... Dify是个不错的开源LLM应用开发平台,提供从 Agent 构建到 AI workflow 编排、RA

ubuntu16.04如何部署dify? 在Linux上安装部署Dify的技巧

《ubuntu16.04如何部署dify?在Linux上安装部署Dify的技巧》随着云计算和容器技术的快速发展,Docker已经成为现代软件开发和部署的重要工具之一,Dify作为一款优秀的云原生应用... Dify 是一个基于 docker 的工作流管理工具,旨在简化机器学习和数据科学领域的多步骤工作流。它