麻省理工最新开发AI模型,让机器人实现自主规划路线

本文主要是介绍麻省理工最新开发AI模型,让机器人实现自主规划路线,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文 | BFT机器人 

图片

麻省理工学院的研究人员独具匠心地应用了人工智能来解决仓库中的机器人路径规划问题,以此缓解交通拥堵的难题。据该学院介绍,他们的团队开发了一种深度学习模型,其效率比传统的强随机搜索方法高出近四倍,极大地提升了机器人路径规划的流畅性和效率。

想象一下,一个现代化的自动化仓库中,数百个移动机器人忙碌地往返于各个目的地,它们需要精准地避开彼此,确保物流运作的顺畅。规划这些机器人的行动路径是一项艰巨的任务,其复杂性使得即使是最先进的寻路算法也感到力不从心,而麻省理工学院的研究人员却对此提出了创新的解决方案。

图片

科学家们精心构建了一个深度学习模型,这个模型能够精准地捕捉仓库中的各种信息,包括机器人的位置预设路径任务需求以及障碍物等。模型可以运用这些信息来预测仓库中最适合机器人行动的区域,以此缓解拥堵,提升整体的工作效率。

“我们创新地设计了一种新的神经网络架构,它特别适合这些大型复杂仓库的实时操作需求。”麻省理工学院土木与环境工程系(CEE)的助理教授Cathy Wu如是说。她进一步解释道:“这个模型能够编码数百个机器人的轨迹、起点、目的地以及它们与其他机器人的关系,而且能够以高效的方式完成这些计算,甚至在机器人组之间实现计算的重用。”

01

分而治之的路径规划方法

该团队的深度学习模型技术独树一帜,其核心理念是将仓库内的机器人进行分组管理,通过应用先进的算法来协调这些较小的机器人群体,模型能够迅速且有效地缓解仓库中的交通拥堵问题。相较于传统的基于搜索的算法,这一方法不仅提高了处理效率,而且更加适应复杂多变的环境。

图片

传统的算法通常采用单一的路径规划策略,即当一个机器人遭遇拥堵时,算法会为其重新规划轨迹,同时保持其他机器人按照原定路线行进。而随着机器人数量的增加,这种方法的协调难度呈指数级增长,使得整体效率受到严重制约。研究团队针对这一问题,巧妙地运用了机器学习的力量。他们训练模型将注意力集中在最容易出现拥堵的区域,这些区域往往也是机器人总旅行时间最有潜力的改进点。

为了实现这一目标,研究人员选择将仓库地面划分为多个小组,每个小组包含一定数量的机器人。以一个拥有800个机器人的大型仓库为例,模型可以将仓库地面划分为20个小组,每个小组包含40个机器人。随后,模型利用基于搜索的求解器对每个小组内的机器人轨迹进行协调,通过预测和分析,能够迅速确定哪个小组最有可能通过轨迹调整来优化整体解决方案。

图片

一旦确定了最具潜力的机器人小组,系统就会迅速应用基于搜索的求解器来缓解该小组的拥堵问题。接着模型会转向下一个最有前途的小组,重复这一优化过程。通过这种分组处理的方式,研究团队成功实现了仓库内机器人轨迹的高效协调,显著提高了仓库的运作效率和流畅度。

02

挑选最合适的机器人作为研究起点

该研究小组骄傲地宣布,他们的神经网络具有卓越的推理能力,这得益于其精准捕捉了单个机器人之间错综复杂的交互关系。这种独特的能力使得神经网络能够预见到,即便两个机器人在初始阶段相隔甚远,它们的行进路径仍有可能在行进途中的某个节点交汇。

图片

系统的另一显著优势在于其高效的计算方式,通过一次性编码约束条件,而非在每个子问题中重复此过程,系统显著简化了计算流程。举例来说,在一个包含800个机器人的仓库中,当需要疏通40个机器人时,其他方法可能需要对全部800个机器人进行重复推理,而麻省理工学院的系统仅需对涉及的所有组进行一次推理。

为了验证这项技术的有效性,研究团队在多个模拟环境中进行了广泛测试,包括典型的仓库环境、带有随机障碍物的场景,以及模拟建筑内部的迷宫式布局。研究人员表示,通过精准识别并优化机器人群体来缓解拥堵问题,这种基于学习的方法比传统的非学习方法快了整整四倍,即使考虑到运行神经网络的额外计算开销,其方法仍比传统方法快出3.5倍

图片

康奈尔理工学院的Andrea Lodi教授对麻省理工学院的研究成果给予了高度评价。他指出:“这项研究采用了一种新颖的架构,其中卷积和注意力机制以高效且有效的方式相互协作。令人印象深刻的是,这种架构能够综合考虑构建路径的时间和空间因素,而无需依赖特定问题的特征工程。”他还补充说:“研究结果非常出色,不仅在解决方案的质量和速度上超越了目前最先进的大型邻域搜索方法,而且该模型还具有很好的泛化能力,可以应用于未见过的场景。”

除了简化仓库操作外,研究人员还坚信,他们的方法在其他复杂的规划任务中同样具有广泛的应用前景,如计算机芯片设计、大型建筑物的管道布线等。

若您对该文章内容有任何疑问,请与我们联系,我们将及时回应。

这篇关于麻省理工最新开发AI模型,让机器人实现自主规划路线的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/773276

相关文章

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

Maven中引入 springboot 相关依赖的方式(最新推荐)

《Maven中引入springboot相关依赖的方式(最新推荐)》:本文主要介绍Maven中引入springboot相关依赖的方式(最新推荐),本文给大家介绍的非常详细,对大家的学习或工作具有... 目录Maven中引入 springboot 相关依赖的方式1. 不使用版本管理(不推荐)2、使用版本管理(推

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式