【牛客面试必刷TOP101】Day25.BM38 在二叉树中找到两个节点的最近公共祖先和BM40 重建二叉树

本文主要是介绍【牛客面试必刷TOP101】Day25.BM38 在二叉树中找到两个节点的最近公共祖先和BM40 重建二叉树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者简介:大家好,我是未央;

博客首页:未央.303

系列专栏:牛客面试必刷TOP101

每日一句:人的一生,可以有所作为的时机只有一次,那就是现在!!!!!

文章目录

  • 前言
  • 一、BM38 在二叉树中找到两个节点的最近公共祖先
  • 题目描述
  • 题目解析
  • 二、BM40 重建二叉树
  • 题目描述
  • 题目解析
  • 总结


前言


一、BM38 在二叉树中找到两个节点的最近公共祖先

题目描述

描述:

给定一棵二叉树(保证非空)以及这棵树上的两个节点对应的val值 o1 和 o2,请找到 o1 和 o2 的最近公共祖先节点。



举例说明:

如当输入{3,5,1,6,2,0,8,#,#,7,4},5,1时,二叉树{3,5,1,6,2,0,8,#,#,7,4}如下图所示:

所以节点值为5和节点值为1的节点的最近公共祖先节点的节点值为3,所以对应的输出为3。

节点本身可以视为自己的祖先.


示例1:


示例2:


题目解析

方法:递归

知识点:二叉树递归

二叉树的递归,则是将某个节点的左子树、右子树看成一颗完整的树,那么对于子树的访问或者操作就是对于原树的访问或者操作的子问题,因此可以自我调用函数不断进入子树。


思路:

我们也可以讨论几种情况:

  • step 1:如果o1和o2中的任一个和root匹配,那么root就是最近公共祖先。
  • step 2:如果都不匹配,则分别递归左、右子树。
  • step 3:如果有一个节点出现在左子树,并且另一个节点出现在右子树,则root就是最近公共祖先.
  • step 4:如果两个节点都出现在左子树,则说明最低公共祖先在左子树中,否则在右子树。
  • step 5:继续递归左、右子树,直到遇到step1或者step3的情况。


二、BM40 重建二叉树

题目描述

描述:

给定节点数为 n 的二叉树的前序遍历和中序遍历结果,请重建出该二叉树并返回它的头结点。



举例说明:

例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建出如下图所示。


示例1:


示例2:

示例3:


题目解析

方法:递归

知识点:二叉树递归

二叉树的递归,则是将某个节点的左子树、右子树看成一颗完整的树,那么对于子树的访问或者操作就是对于原树的访问或者操作的子问题,因此可以自我调用函数不断进入子树。


思路:

对于二叉树的前序遍历,我们知道序列的第一个元素必定是根节点的值,因为序列没有重复的元素,因此中序遍历中可以找到相同的这个元素,而我们又知道中序遍历中根节点将二叉树分成了左右子树两个部分,如下图所示:

我们可以发现,数字1是根节点,并将二叉树分成了(247)和(3568)两棵子树,而子树的的根也是相应前序序列的首位,比如左子树的根是数字2,右子树的根是数字3,这样我们就可以利用前序遍历序列找子树的根节点,利用中序遍历序列区分每个子树的节点数。


具体做法:

  • step 1:先根据前序遍历第一个点建立根节点。
  • step 2:然后遍历中序遍历找到根节点在数组中的位置。
  • step 3:再按照子树的节点数将两个遍历的序列分割成子数组,将子数组送入函数建立子树。
  • step 4:直到子树的序列长度为0,结束递归。

总结

这篇关于【牛客面试必刷TOP101】Day25.BM38 在二叉树中找到两个节点的最近公共祖先和BM40 重建二叉树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/773156

相关文章

Spring Boot配置和使用两个数据源的实现步骤

《SpringBoot配置和使用两个数据源的实现步骤》本文详解SpringBoot配置双数据源方法,包含配置文件设置、Bean创建、事务管理器配置及@Qualifier注解使用,强调主数据源标记、代... 目录Spring Boot配置和使用两个数据源技术背景实现步骤1. 配置数据源信息2. 创建数据源Be

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

C++链表的虚拟头节点实现细节及注意事项

《C++链表的虚拟头节点实现细节及注意事项》虚拟头节点是链表操作中极为实用的设计技巧,它通过在链表真实头部前添加一个特殊节点,有效简化边界条件处理,:本文主要介绍C++链表的虚拟头节点实现细节及注... 目录C++链表虚拟头节点(Dummy Head)一、虚拟头节点的本质与核心作用1. 定义2. 核心价值二

python3如何找到字典的下标index、获取list中指定元素的位置索引

《python3如何找到字典的下标index、获取list中指定元素的位置索引》:本文主要介绍python3如何找到字典的下标index、获取list中指定元素的位置索引问题,具有很好的参考价值,... 目录enumerate()找到字典的下标 index获取list中指定元素的位置索引总结enumerat

数据库面试必备之MySQL中的乐观锁与悲观锁

《数据库面试必备之MySQL中的乐观锁与悲观锁》:本文主要介绍数据库面试必备之MySQL中乐观锁与悲观锁的相关资料,乐观锁适用于读多写少的场景,通过版本号检查避免冲突,而悲观锁适用于写多读少且对数... 目录一、引言二、乐观锁(一)原理(二)应用场景(三)示例代码三、悲观锁(一)原理(二)应用场景(三)示例

C语言实现两个变量值交换的三种方式

《C语言实现两个变量值交换的三种方式》两个变量值的交换是编程中最常见的问题之一,以下将介绍三种变量的交换方式,其中第一种方式是最常用也是最实用的,后两种方式一般只在特殊限制下使用,需要的朋友可以参考下... 目录1.使用临时变量(推荐)2.相加和相减的方式(值较大时可能丢失数据)3.按位异或运算1.使用临时

SpringBoot自定义注解如何解决公共字段填充问题

《SpringBoot自定义注解如何解决公共字段填充问题》本文介绍了在系统开发中,如何使用AOP切面编程实现公共字段自动填充的功能,从而简化代码,通过自定义注解和切面类,可以统一处理创建时间和修改时间... 目录1.1 问题分析1.2 实现思路1.3 代码开发1.3.1 步骤一1.3.2 步骤二1.3.3

java两个List的交集,并集方式

《java两个List的交集,并集方式》文章主要介绍了Java中两个List的交集和并集的处理方法,推荐使用Apache的CollectionUtils工具类,因为它简单且不会改变原有集合,同时,文章... 目录Java两个List的交集,并集方法一方法二方法三总结java两个List的交集,并集方法一

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动