详解动态规划(算法村第十九关青铜挑战)

2024-03-03 20:36

本文主要是介绍详解动态规划(算法村第十九关青铜挑战),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

不同路径

62. 不同路径 - 力扣(LeetCode)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

递归

递归的含义就是处理方法不变,但是问题的规模减少。

public int uniquePaths(int m, int n)
{//如果只剩一行或者一列,那只有一个方向,一条路径了if (m == 1 || n == 1)return 1;//往右走一步,问题规模缩小成 m * (n-1) 的网格//往下走一步,问题规模缩小成 (m-1) * n 的网格return uniquePaths(m, n - 1) + uniquePaths(m - 1, n);
}

但在此题中普通的递归解法超时,原因是存在大量重复计算。

在这里插入图片描述

例如,不管是从(0,1)还是(1,0)从来到(1,1),接下来从(1,1)到终点都会有2种走法,不必每次都重新计算。而普通的递归只能一遍又一遍地计算从(1,1)到终点有多少种走法。

利用二维数组进行记忆化搜索

在这里插入图片描述

每个格子的数字表示从起点开始到达当前位置的路径数,计算总路径时可以先查一下记录,如果有记录就直接读,没有再计算,这样就可以避免大量重复计算,这就是记忆化搜索

  • 第一行和第一列都是1。
  • 其他格子的值 = 左侧格子的值 + 上方格子格子的值。

如图中的4,由上面的1和左侧的3计算而来,15由上侧的5和左侧的10计算而来。

public int uniquePaths_2(int m, int n)
{int[][] record = new int[m][n];record[0][0] = 1;for (int row = 0; row < m; ++row)for (int col = 0; col < n; ++col){if (row > 0 && col > 0)record[row][col] = record[row - 1][col] + record[row][col - 1];else if (col > 0)	//第一行格子record[row][col] = record[row][col - 1];else if(row > 0)	//第一列格子record[row][col] = record[row - 1][col];}return record[m - 1][n - 1];
}

将二维数组优化为一维数组

第一步,用1填充一维数组。

在这里插入图片描述

第二步,从头遍历数组,除了第一个位置,位置的新值 = 前一个位置的值 + 位置的原始值 。其实,在二维数组中,位置的原始值就在位置新值的上方。

在这里插入图片描述

重复第二步

在这里插入图片描述

把三个一维数组拼接起来,发现恰好跟上面的二维数组一致:

在这里插入图片描述

所以,路径总数就是一维数组最后一个元素的值。

这种反复更新的一维数组就是滚动数组。

public int uniquePaths_3(int m, int n)
{int[] dp = new int[n];Arrays.fill(dp,1);for (int row = 1; row < m; row++)for (int col = 1; col < n; col++)dp[col] = dp[col - 1] + dp[col];return dp[n - 1];
}

总结

这个题目涵盖了dp的多个方面,比如重复子问题(递归)、记忆化搜索(将已经计算好的结果存入数组,后面用到就直接读取)、滚动数组(二维数组优化为一维数组)。

最小路径和

64. 最小路径和 - 力扣(LeetCode)

给定一个包含非负整数的 *m* x *n* 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

**说明:**每次只能向下或者向右移动一步

public int minPathSum(int[][] grid)
{//逐行遍历,更新 grid 的格值,作为[在方向约束下,从起点到当前格的最小路经和]for (int row = 0; row < grid.length; row++)for (int col = 0; col < grid[row].length; col++){if (row == 0 && col == 0)continue;else if (row == 0)  //只能往右走grid[row][col] = grid[row][col - 1] + grid[row][col];else if (col == 0)  //只能往下走grid[row][col] = grid[row - 1][col] + grid[row][col];else                //从[往右、往下]两个方向挑路径和最小的走grid[row][col] = Math.min(grid[row][col - 1], grid[row - 1][col]) + grid[row][col];}return grid[grid.length - 1][grid[0].length - 1];
}

在这里插入图片描述

我们完全不需要建立 dp 矩阵浪费额外空间,直接遍历 grid 并修改其值即可。因为原 grid 矩阵元素中被覆盖为 dp 元素后(都处于当前遍历点的左上方),不会再被使用到。

三角形最小路径和

120. 三角形最小路径和 - 力扣(LeetCode)

给定一个三角形 triangle ,找出自顶向下的最小路径和。

每一步只能移动到下一行中相邻的结点上。相邻的结点 在这里指的是 下标上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。也就是说,如果正位于当前行的下标 i ,那么下一步可以移动到下一行的下标 ii + 1

示例 1:

输入:triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
输出:11
解释:如下面简图所示:23 46 5 7
4 1 8 3
自顶向下的最小路径和为 11(即 2 + 3 + 5 + 1 = 11)。

自底向上 dp + 空间优化

public int minimumTotal(List<List<Integer>> triangle)
{int[] dp = new int[triangle.size() + 1];  //多出一格是为了dp数组能够获取triangle最底层的值// 从最底层开始 dpfor (int row = triangle.size() - 1; row >= 0; row--)for (int col = 0; col < row + 1; col++) //第 row 行有 row + 1个数dp[col] = Math.min(dp[col], dp[col + 1]) + triangle.get(row).get(col);//顶点储存着从最底层到顶点的最小路径和return dp[0];
}

理论上可以直接修改triangle的值而不用额外申请空间,但由于triangle的类型是List<List<Integer>>,修改起来很繁琐,故还是选择申请这O(n)dp空间

区分动态规划和回溯

  • 动态规划:只关心当前结果是什么,而不记录结果怎么来的,无法获得完整的路径
  • 回溯:能够获得一条乃至所有满足要求的完整路径。

动态规划题目的三种基本的类型

  1. 计数相关。例如求有多少种方式走到右下角,有多少种方式选出K个数使得…,等等。
  2. 求最大最小值,最多最少。例如最大数字和、最长上升子序列长度、最长公共子序列、最长回文序列等等。
  3. 求存在性。例如取石子游戏,先手是否必胜;能不能选出K个数使得…,等等。

解决问题的模板

  1. 确定状态和子问题。一些题目用逆向思维分析会更容易。
  2. 确定状态转移方程,也就是确定 dp 数组要如何更新状态(或者直接在原数组上改动)。
  3. 确定初始条件和边界情况。
  4. 按照顺序计算。

这篇关于详解动态规划(算法村第十九关青铜挑战)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/770827

相关文章

Linux线程同步/互斥过程详解

《Linux线程同步/互斥过程详解》文章讲解多线程并发访问导致竞态条件,需通过互斥锁、原子操作和条件变量实现线程安全与同步,分析死锁条件及避免方法,并介绍RAII封装技术提升资源管理效率... 目录01. 资源共享问题1.1 多线程并发访问1.2 临界区与临界资源1.3 锁的引入02. 多线程案例2.1 为

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原