帝都房价回调?带你用Python了解北京二手房市场现状

2024-03-03 07:59

本文主要是介绍帝都房价回调?带你用Python了解北京二手房市场现状,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

更多精彩推荐,请关注我们

作者:Mika

数据:真达  

后期:泽龙

【导读】

今天让我们来聊一聊北京的二手房市场现状。公众号后台,回复关键字“二手房”获取完整数据。

Show me data,用数据说话

今天我们聊一聊 北京二手房数据

点击下方视频,先睹为快:

对于许多在一线城市打拼的人群而言,能够在大城市安家,扎根下来都是为止奋斗的梦想。但一线城市的突破天际房价也让很多人望而却步。

 

转眼间2020年已经过半,大家买房子、买房子的愿望实现了吗?你关注的房子降价了吗?

 

之前DT财经的《我只有300万预算,能在上海买到什么样的房子?》分析了上海二手房的房价,引起了很多人的反响。

 

那么帝都的二手房市场又是怎样的呢?这次我们用Python来分析下北京的二手房数据。

 

我们使用Python获取了链家网上北京市16个区的二手房数据。首先导入要使用的数据处理包pandas,可视化工具pyecharts和plotly。

 

# 导入所需包
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
import os  from pyecharts.charts import Pie, Map, Bar, Line, Grid, Page
from pyecharts import options as opts import plotly as py 
import plotly.graph_objs as go 
import plotly.express as px 

01

数据读入

使用循环读入数据集,然后进行去重处理,查看一下数据集大小,可以看到去重之后一共有4403条数据。

 

# 读入数据
file_list = os.listdir('../data/')df_all = pd.DataFrame() 
for file in file_list:file_name = file.split('.')[0]df = pd.read_csv(f'../data/{file}')df['region_name'] = file_name df_all = df_all.append(df, ignore_index=True) # 去重
df_all = df_all.drop_duplicates()
print(df_all.shape) 
(33509, 9)

预览以下数据:

df_all.head(2) 

02

数据预处理

我们对数据集的各个特征进行提取和处理,以便后续的数据分析工作,主要处理工作包含:

  1. title:无需分析,删除

  2. detail_url:无需分析,删除

  3. position:维度过细、删除

  4. houseInfo:提取室、厅、面积、方位、装修、楼层(高中低)、建筑年份、板塔

  5. followInfo:无需分析,删除

  6. tag_info:提取是否靠近地铁

  7. total_price:提取房屋总价

  8. unitPrice:房屋单价

  9. region_name:无需处理

# 删除列
df_all = df_all.drop(['title', 'detail_url', 'position', 'followInfo'], axis=1)  # 提取室厅
df_all['halls'] = df_all['houseInfo'].str.split('|').str[0].str.extract(r'(\d+)室')
df_all['bedrooms'] = df_all['houseInfo'].str.split('|').str[0].str.extract(r'\d室(\d+)厅') 
# 提取面积
df_all['area'] = df_all['houseInfo'].str.split('|').str[1].str.extract(r'(\d+.*\d+)平米')
# 提取朝向
df_all['orient'] = df_all['houseInfo'].str.split('|').str[2]
# 提取装修类型
df_all['decorate_type'] = df_all['houseInfo'].str.split('|').str[3]
# 提取楼层
df_all['floor'] = df_all['houseInfo'].str.split('|').str[4]
# 提取建筑年份
df_all['built_year'] = df_all['houseInfo'].str.split('|').str[5].str.extract(r'(\d+)')
# 提取板塔
df_all['banta'] = df_all['houseInfo'].str.split('|').str[6]
# 删除houseInfo
df_all = df_all.drop('houseInfo', axis=1) # 提取地铁
df_all['subway'] = [1 if '地铁' in i else 0 for i in df_all['tag_info']]
# 删除tag_info
df_all = df_all.drop('tag_info', axis=1)# 提取总价
df_all['total_price'] = df_all['total_price'].str.extract(r'(\d+)')
df_all['unitPrice'] = df_all['unitPrice'].str.extract(r'(\d+)')# 空值-直接删除
df_all = df_all.dropna()# 转换数据类型
df_all['total_price'] = df_all['total_price'].astype('int')
df_all['unitPrice'] = df_all['unitPrice'].astype('int')
df_all['halls'] = df_all['halls'].astype('int')
df_all['bedrooms'] = df_all['bedrooms'].astype('int')
df_all['area'] = df_all['area'].astype('float')
df_all['built_year'] = df_all['built_year'].astype('int')
df_all['subway'] = df_all['subway'].astype('int')
df_all.head() 

进一步处理楼层、建筑年份和房屋朝向字段。

def transform_floor(x):if x == '高楼层' or x == '顶层' or x == '上叠':return '高层'elif x == '低楼层' or x == '底层' or x == '下叠' or x == '1层' or x == '2层' or x == '3层':return '低层'elif x == '中楼层' or x == '4层' or x == '5层' or x == '6层':return '中层' elif x == '地下室':return '地下室'else:  # 其他归为高层return '高层'  # floor一般化
df_all['floor_type'] = df_all['floor'].str.replace(r'\(.*?\)', '').str.strip()
df_all['floor_type'] = df_all.floor_type.apply(transform_floor)
df_all = df_all.drop('floor', axis=1) # orient-一般化
df_all['orient'] = df_all['orient'].str.extract(r'([\u4e00-\u9fa5])')# bulit_year
df_all['built_year'] = 2020 - df_all['built_year']# banta-一般化
df_all['banta'] = df_all.banta.str.strip()
df_all.head() 

03

数据探索和可视化

以下仅列出关键部分数据可视化分析代码:

近一年北京二手房房价走势图

首先我们看到近一年来,北京二手房房价的走势图,可以看到有回调的趋势,目前的均价在每平方米57589的样子。

 

北京不同区域的二手房房源数量

那么北京各个区域的二手房源分布如何呢?

经过统计可以看到,朝阳区的二手房数量遥遥领先,达到25648.其次是丰台,共11094。之后海淀、昌平、大兴紧随其后。

 

北京不同区域的二手房均价

不同区域的二手房价又是怎样的呢?西城区一马当先,以114980元每平米的价格领跑北京的二手房市场。其次,东城区以97295每平米排在第二位。海淀区以85954每平米的价格排在第三位。

 

代码如下:

# 产生数据
s_region = df_all.groupby('region_name')['unitPrice'].mean().sort_values(ascending=False) 
x_data = [i+'区' for i in s_region.index.tolist()]
y_data = [round(i) for i in s_region.values.tolist()] data_pair = [list(z) for z in zip(x_data, y_data)]# 地图
map1 = Map(init_opts=opts.InitOpts(width='1350px', height='750px'))
map1.add('', data_pair, maptype='北京')
map1.set_global_opts(title_opts=opts.TitleOpts(title='北京不同区域的二手房均价(元/平米)'), visualmap_opts=opts.VisualMapOpts(max_=114979))
map1.render() 
# 条形图
bar2 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px'))
bar2.add_xaxis(x_data)
bar2.add_yaxis('', y_data)
bar2.set_global_opts(title_opts=opts.TitleOpts(title='北京不同区域的二手房均价(元/平米)'), visualmap_opts=opts.VisualMapOpts(max_=114979))
bar2.render() 

北京二手房都处在什么价位

那么在北京买一套二手房到底要花多少钱?接着我们分析了二手房的价位,从图中可以看到总价在300-500万内的最多,占比达到35.9%。500-800万的占比26.54%。300万以下的占比19.54%。

代码如下:

bins = [74, 300, 500, 800, 1000, 8299]
bins_label = ['300万及以下', '300-500万', '500-800万', '800-1000万', '1000万以上'] # 新增字段
df_all['price_cut'] = pd.cut(df_all['total_price'], bins=bins, labels=bins_label) price_num = df_all.price_cut.value_counts() 
# 数据对
data_pair = [list(z) for z in zip(price_num.index.tolist(), price_num.values.tolist())]# 绘制饼图
pie1 = Pie(init_opts=opts.InitOpts(width='1350px', height='750px'))
pie1.add('', data_pair=data_pair, radius=['30%', '60%'], rosetype='radius')
pie1.set_global_opts(title_opts=opts.TitleOpts(title='北京二手房都处在哪些价位?'), legend_opts=opts.LegendOpts(orient='vertical', pos_top='15%', pos_left='2%'))
pie1.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{d}%"))
pie1.set_colors(['#FF7F0E', '#1F77B4', '#2CA02C', '#D62728', '#946C8B'])
pie1.render() 

北京二手房房龄分布

那么这些二手房的房龄都有多久了呢?可以看到房龄在20年以上的最多,有10946套占比33.73%,其次房龄在15-20年的有7835套,占比24.15%。5年以内的仅有1441套,占比4.44%。

 

是否靠近地铁和房屋单价的关系

一般来说,靠近地铁越近的房子房价越高,从分布的箱线图可以看出,以中位数来看,靠近地铁的房子单价比不不靠近地铁的房子每平米高12317元。

不同朝向的房屋数量分布

房屋朝向方面,朝南的自然是最多的,占比达到68.97%。其次是朝东的,占比18.25%。

不同房屋结构的数量分布

房屋结构方面,板楼是最多的占比64.39%。其次是塔楼,占比16.85%。板楼塔楼结合的占比16.45%。

房屋面积和房屋价格的关系

从散点图可以看出,房屋的面积和房屋价格呈现正相关,计算皮尔逊相关系数的值为0.67,为强相关。

代码如下:

# 添加轨迹
fig = px.scatter(df_all, x='area', y='total_price')fig.update_layout(title='房屋面积和房屋价格的关系(万元)') 
py.offline.plot(fig, filename='房屋面积和房屋价格的关系.html') 

 

卧室数量和房屋价格的关系

从分布的箱线图可以看出,卧室数量越多,面积越大,则房屋总价越高。房价呈现右偏分布,且离群值较多。

 

客厅数量和房屋价格的关系

客厅和卧室一样反映在房屋的面积上,客厅 数越多,则房屋总价越高。

代码如下:

# 合并
df_all['halls'] = [i if i<=4 else '5及以上' for i in df_all['halls']]
df_all['halls'] = df_all.halls.astype('str')# 添加数据
y1 = df_all[df_all['halls']=='1']['total_price'].values
y2 = df_all[df_all['halls']=='2']['total_price'].values
y3 = df_all[df_all['halls']=='3']['total_price'].values
y4 = df_all[df_all['halls']=='4']['total_price'].values
y5 = df_all[df_all['halls']=='5及以上']['total_price'].values# 实例Figure
fig = go.Figure() # 添加轨迹
fig.add_trace(trace=go.Box(y=y1, name='1厅'))
fig.add_trace(trace=go.Box(y=y2, name='2厅'))
fig.add_trace(trace=go.Box(y=y3, name='3厅'))
fig.add_trace(trace=go.Box(y=y4, name='4厅'))
fig.add_trace(trace=go.Box(y=y5, name='5厅及以上'))# 配置项
fig.update_layout(title='客厅数量和房屋价格的关系(万元)')
py.offline.plot(fig, filename='客厅数量和房屋价格的关系.html') 

装修类型和房屋单价的关系

不同装修类型花费的成本不同,从装修类型看,精装的房子单价最高,然后是简装、毛坯。

本文出品:CDA数据分析师(ID: cdacdacda)

近期开班情况

2020年8月16日

这篇关于帝都房价回调?带你用Python了解北京二手房市场现状的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/768983

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数