帝都房价回调?带你用Python了解北京二手房市场现状

2024-03-03 07:59

本文主要是介绍帝都房价回调?带你用Python了解北京二手房市场现状,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

更多精彩推荐,请关注我们

作者:Mika

数据:真达  

后期:泽龙

【导读】

今天让我们来聊一聊北京的二手房市场现状。公众号后台,回复关键字“二手房”获取完整数据。

Show me data,用数据说话

今天我们聊一聊 北京二手房数据

点击下方视频,先睹为快:

对于许多在一线城市打拼的人群而言,能够在大城市安家,扎根下来都是为止奋斗的梦想。但一线城市的突破天际房价也让很多人望而却步。

 

转眼间2020年已经过半,大家买房子、买房子的愿望实现了吗?你关注的房子降价了吗?

 

之前DT财经的《我只有300万预算,能在上海买到什么样的房子?》分析了上海二手房的房价,引起了很多人的反响。

 

那么帝都的二手房市场又是怎样的呢?这次我们用Python来分析下北京的二手房数据。

 

我们使用Python获取了链家网上北京市16个区的二手房数据。首先导入要使用的数据处理包pandas,可视化工具pyecharts和plotly。

 

# 导入所需包
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
import os  from pyecharts.charts import Pie, Map, Bar, Line, Grid, Page
from pyecharts import options as opts import plotly as py 
import plotly.graph_objs as go 
import plotly.express as px 

01

数据读入

使用循环读入数据集,然后进行去重处理,查看一下数据集大小,可以看到去重之后一共有4403条数据。

 

# 读入数据
file_list = os.listdir('../data/')df_all = pd.DataFrame() 
for file in file_list:file_name = file.split('.')[0]df = pd.read_csv(f'../data/{file}')df['region_name'] = file_name df_all = df_all.append(df, ignore_index=True) # 去重
df_all = df_all.drop_duplicates()
print(df_all.shape) 
(33509, 9)

预览以下数据:

df_all.head(2) 

02

数据预处理

我们对数据集的各个特征进行提取和处理,以便后续的数据分析工作,主要处理工作包含:

  1. title:无需分析,删除

  2. detail_url:无需分析,删除

  3. position:维度过细、删除

  4. houseInfo:提取室、厅、面积、方位、装修、楼层(高中低)、建筑年份、板塔

  5. followInfo:无需分析,删除

  6. tag_info:提取是否靠近地铁

  7. total_price:提取房屋总价

  8. unitPrice:房屋单价

  9. region_name:无需处理

# 删除列
df_all = df_all.drop(['title', 'detail_url', 'position', 'followInfo'], axis=1)  # 提取室厅
df_all['halls'] = df_all['houseInfo'].str.split('|').str[0].str.extract(r'(\d+)室')
df_all['bedrooms'] = df_all['houseInfo'].str.split('|').str[0].str.extract(r'\d室(\d+)厅') 
# 提取面积
df_all['area'] = df_all['houseInfo'].str.split('|').str[1].str.extract(r'(\d+.*\d+)平米')
# 提取朝向
df_all['orient'] = df_all['houseInfo'].str.split('|').str[2]
# 提取装修类型
df_all['decorate_type'] = df_all['houseInfo'].str.split('|').str[3]
# 提取楼层
df_all['floor'] = df_all['houseInfo'].str.split('|').str[4]
# 提取建筑年份
df_all['built_year'] = df_all['houseInfo'].str.split('|').str[5].str.extract(r'(\d+)')
# 提取板塔
df_all['banta'] = df_all['houseInfo'].str.split('|').str[6]
# 删除houseInfo
df_all = df_all.drop('houseInfo', axis=1) # 提取地铁
df_all['subway'] = [1 if '地铁' in i else 0 for i in df_all['tag_info']]
# 删除tag_info
df_all = df_all.drop('tag_info', axis=1)# 提取总价
df_all['total_price'] = df_all['total_price'].str.extract(r'(\d+)')
df_all['unitPrice'] = df_all['unitPrice'].str.extract(r'(\d+)')# 空值-直接删除
df_all = df_all.dropna()# 转换数据类型
df_all['total_price'] = df_all['total_price'].astype('int')
df_all['unitPrice'] = df_all['unitPrice'].astype('int')
df_all['halls'] = df_all['halls'].astype('int')
df_all['bedrooms'] = df_all['bedrooms'].astype('int')
df_all['area'] = df_all['area'].astype('float')
df_all['built_year'] = df_all['built_year'].astype('int')
df_all['subway'] = df_all['subway'].astype('int')
df_all.head() 

进一步处理楼层、建筑年份和房屋朝向字段。

def transform_floor(x):if x == '高楼层' or x == '顶层' or x == '上叠':return '高层'elif x == '低楼层' or x == '底层' or x == '下叠' or x == '1层' or x == '2层' or x == '3层':return '低层'elif x == '中楼层' or x == '4层' or x == '5层' or x == '6层':return '中层' elif x == '地下室':return '地下室'else:  # 其他归为高层return '高层'  # floor一般化
df_all['floor_type'] = df_all['floor'].str.replace(r'\(.*?\)', '').str.strip()
df_all['floor_type'] = df_all.floor_type.apply(transform_floor)
df_all = df_all.drop('floor', axis=1) # orient-一般化
df_all['orient'] = df_all['orient'].str.extract(r'([\u4e00-\u9fa5])')# bulit_year
df_all['built_year'] = 2020 - df_all['built_year']# banta-一般化
df_all['banta'] = df_all.banta.str.strip()
df_all.head() 

03

数据探索和可视化

以下仅列出关键部分数据可视化分析代码:

近一年北京二手房房价走势图

首先我们看到近一年来,北京二手房房价的走势图,可以看到有回调的趋势,目前的均价在每平方米57589的样子。

 

北京不同区域的二手房房源数量

那么北京各个区域的二手房源分布如何呢?

经过统计可以看到,朝阳区的二手房数量遥遥领先,达到25648.其次是丰台,共11094。之后海淀、昌平、大兴紧随其后。

 

北京不同区域的二手房均价

不同区域的二手房价又是怎样的呢?西城区一马当先,以114980元每平米的价格领跑北京的二手房市场。其次,东城区以97295每平米排在第二位。海淀区以85954每平米的价格排在第三位。

 

代码如下:

# 产生数据
s_region = df_all.groupby('region_name')['unitPrice'].mean().sort_values(ascending=False) 
x_data = [i+'区' for i in s_region.index.tolist()]
y_data = [round(i) for i in s_region.values.tolist()] data_pair = [list(z) for z in zip(x_data, y_data)]# 地图
map1 = Map(init_opts=opts.InitOpts(width='1350px', height='750px'))
map1.add('', data_pair, maptype='北京')
map1.set_global_opts(title_opts=opts.TitleOpts(title='北京不同区域的二手房均价(元/平米)'), visualmap_opts=opts.VisualMapOpts(max_=114979))
map1.render() 
# 条形图
bar2 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px'))
bar2.add_xaxis(x_data)
bar2.add_yaxis('', y_data)
bar2.set_global_opts(title_opts=opts.TitleOpts(title='北京不同区域的二手房均价(元/平米)'), visualmap_opts=opts.VisualMapOpts(max_=114979))
bar2.render() 

北京二手房都处在什么价位

那么在北京买一套二手房到底要花多少钱?接着我们分析了二手房的价位,从图中可以看到总价在300-500万内的最多,占比达到35.9%。500-800万的占比26.54%。300万以下的占比19.54%。

代码如下:

bins = [74, 300, 500, 800, 1000, 8299]
bins_label = ['300万及以下', '300-500万', '500-800万', '800-1000万', '1000万以上'] # 新增字段
df_all['price_cut'] = pd.cut(df_all['total_price'], bins=bins, labels=bins_label) price_num = df_all.price_cut.value_counts() 
# 数据对
data_pair = [list(z) for z in zip(price_num.index.tolist(), price_num.values.tolist())]# 绘制饼图
pie1 = Pie(init_opts=opts.InitOpts(width='1350px', height='750px'))
pie1.add('', data_pair=data_pair, radius=['30%', '60%'], rosetype='radius')
pie1.set_global_opts(title_opts=opts.TitleOpts(title='北京二手房都处在哪些价位?'), legend_opts=opts.LegendOpts(orient='vertical', pos_top='15%', pos_left='2%'))
pie1.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{d}%"))
pie1.set_colors(['#FF7F0E', '#1F77B4', '#2CA02C', '#D62728', '#946C8B'])
pie1.render() 

北京二手房房龄分布

那么这些二手房的房龄都有多久了呢?可以看到房龄在20年以上的最多,有10946套占比33.73%,其次房龄在15-20年的有7835套,占比24.15%。5年以内的仅有1441套,占比4.44%。

 

是否靠近地铁和房屋单价的关系

一般来说,靠近地铁越近的房子房价越高,从分布的箱线图可以看出,以中位数来看,靠近地铁的房子单价比不不靠近地铁的房子每平米高12317元。

不同朝向的房屋数量分布

房屋朝向方面,朝南的自然是最多的,占比达到68.97%。其次是朝东的,占比18.25%。

不同房屋结构的数量分布

房屋结构方面,板楼是最多的占比64.39%。其次是塔楼,占比16.85%。板楼塔楼结合的占比16.45%。

房屋面积和房屋价格的关系

从散点图可以看出,房屋的面积和房屋价格呈现正相关,计算皮尔逊相关系数的值为0.67,为强相关。

代码如下:

# 添加轨迹
fig = px.scatter(df_all, x='area', y='total_price')fig.update_layout(title='房屋面积和房屋价格的关系(万元)') 
py.offline.plot(fig, filename='房屋面积和房屋价格的关系.html') 

 

卧室数量和房屋价格的关系

从分布的箱线图可以看出,卧室数量越多,面积越大,则房屋总价越高。房价呈现右偏分布,且离群值较多。

 

客厅数量和房屋价格的关系

客厅和卧室一样反映在房屋的面积上,客厅 数越多,则房屋总价越高。

代码如下:

# 合并
df_all['halls'] = [i if i<=4 else '5及以上' for i in df_all['halls']]
df_all['halls'] = df_all.halls.astype('str')# 添加数据
y1 = df_all[df_all['halls']=='1']['total_price'].values
y2 = df_all[df_all['halls']=='2']['total_price'].values
y3 = df_all[df_all['halls']=='3']['total_price'].values
y4 = df_all[df_all['halls']=='4']['total_price'].values
y5 = df_all[df_all['halls']=='5及以上']['total_price'].values# 实例Figure
fig = go.Figure() # 添加轨迹
fig.add_trace(trace=go.Box(y=y1, name='1厅'))
fig.add_trace(trace=go.Box(y=y2, name='2厅'))
fig.add_trace(trace=go.Box(y=y3, name='3厅'))
fig.add_trace(trace=go.Box(y=y4, name='4厅'))
fig.add_trace(trace=go.Box(y=y5, name='5厅及以上'))# 配置项
fig.update_layout(title='客厅数量和房屋价格的关系(万元)')
py.offline.plot(fig, filename='客厅数量和房屋价格的关系.html') 

装修类型和房屋单价的关系

不同装修类型花费的成本不同,从装修类型看,精装的房子单价最高,然后是简装、毛坯。

本文出品:CDA数据分析师(ID: cdacdacda)

近期开班情况

2020年8月16日

这篇关于帝都房价回调?带你用Python了解北京二手房市场现状的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/768983

相关文章

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

Python海象运算符:=的具体实现

《Python海象运算符:=的具体实现》海象运算符又称​​赋值表达式,Python3.8后可用,其核心设计是在表达式内部完成变量赋值并返回该值,从而简化代码逻辑,下面就来详细的介绍一下如何使用,感兴趣... 目录简介​​条件判断优化循环控制简化​推导式高效计算​正则匹配与数据提取​性能对比简介海象运算符

python项目环境切换的几种实现方式

《python项目环境切换的几种实现方式》本文主要介绍了python项目环境切换的几种实现方式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 如何在不同python项目中,安装不同的依赖2. 如何切换到不同项目的工作空间3.创建项目

python项目打包成docker容器镜像的两种方法实现

《python项目打包成docker容器镜像的两种方法实现》本文介绍两种将Python项目打包为Docker镜像的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录简单版:(一次成功,后续下载对应的软件依赖)第一步:肯定是构建dockerfile,如下:第二步

Python + Streamlit项目部署方案超详细教程(非Docker版)

《Python+Streamlit项目部署方案超详细教程(非Docker版)》Streamlit是一款强大的Python框架,专为机器学习及数据可视化打造,:本文主要介绍Python+St... 目录一、针对 Alibaba Cloud linux/Centos 系统的完整部署方案1. 服务器基础配置(阿里