康谋技术 | 如何有效减少自动驾驶中传感器数据的存储量

2024-03-02 23:30

本文主要是介绍康谋技术 | 如何有效减少自动驾驶中传感器数据的存储量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

导读

一、应对方法

1、时间同步策略

2、数据压缩

3、专注所需场景

二、康谋方案

1、康谋HEEX

2、HEEX的工作流


导读

对于数据的存储落盘来说,占据绝大部分存储空间的数据来自于相机传感器,特别是当前的数采需求可能需要6-8个800M像素的相机采集,进行RAW数据落盘。

举个例子

在以非RAW格式,比如YUV422 8bits,在3840×2160(800M)分辨率下以30fps进行拍摄:3840 × 2160 × 16 / 8 ×30 / 1024^2 = 475MB/s,近500MB/s的带宽需求,在搭载多个800M相机以及其他传感器的情况下,一辆数采车可以轻易达到5TB/小时的落盘需求。

因此能够有效降低数采的存储成本,减少数据挖掘的花费至关重要。

一、应对方法

1、时间同步策略

通过良好时间同步策略,可以避免产生大量无效数据。当然这里的无效也是相对而言的,原因之一是通过后期的手动调整进行不同模态的数据的时间对齐是一种非常耗时的工作。在数据采集的过程中,通过触发式的机械连接和软件时间同步,让不同模态的传感器数据打上高精度的时间戳,一方面便于数据管理,减少无效数据落盘,另一方面充分有利于算法训练。

2、数据压缩

从数据压缩的角度来看,在采集过程中可以采用H.264或者H.265进行视频压缩,比如在H.265压缩的情况下,取决于采集数据的复杂性、分辨率、帧率和编码器的设置,可以实现50%左右的压缩比率,1GB压缩成500MB,当然这个比率会受到很多参数影响,因此因实际情况而有所不同。

3、专注所需场景

目前,随着传感器技术的和算法的进步,自动驾驶算法/系统已经能够应对99%的场景,这是因为各个算法已经获得了PB甚至EB级别的数据,覆盖了生活中的绝大多数场景。为了去应对剩下1%的边缘场景,实际上,让数采车直接进行上路进行数据采集,将会有大量的重复数据,并且需要数据团队需要花费相当多的时间在其中寻找到目标数据。所以,优化数据的采集模式,让数采专注于算法所需场景的数据,是当下能够有效减少数据存储体积的方式。

图片

二、康谋方案

1、康谋HEEX

针对这方面,康谋HEEX智能数据管理平台采用了基于事件和预设触发器的数据采集解决方案,能够使得数据团队直接在边缘设备或是云端直接提取与所需事件相关的数据。我们称之为“智能数据”,即最相关的数据,并且能够无缝分发给开发团队,优化数据存储成本和资源。

图片

2、HEEX的工作流

康谋HEEX的工作流主要分为以下5个部分:

  • 定义所需的“智能数据”。即设置所需采集的数据的条件,比如“在有行人通过时,制动加速度超过5m/s^2”场景的数据;

  • 定义触发器。将设置的条件通过康谋HEEX SDK自动部署到数据采集系统上;

  • 部署代理。即设置监测数据、评估条件并最终记录事件的相关数据到指定的系统中;

  • 提取和上传数据。通过系统的网关和康谋HEEX API,可以方便上传到云端或下载到本地;

  • 数据分发。同样通过康谋HEEX API可以根据用户的需求自动处理不同模态的数据,并将其分发的对应的开发团队。并随着场景的变化和更新,可以进行更加细化和多样化的条件设置,以更好的定位智能数据。

图片

在这个过程中,落盘的只有目标场景的数据,而并非所有数采车经过的场景,因此能够有效降低数采的存储成本,减少数据挖掘的花费。

同时,康谋HEEX也将会根据需求,集成到康谋高精度的时间同步数据采集方案中,同时提供数据压缩和智能数据管理服务。


如您对康谋智能数据管理平台HEEX感兴趣,

欢迎联系我们了解更多信息。

期待与您的交流!

康谋科技 - 您的一站式自动驾驶解决方案合作伙伴,助力自动驾驶商业化落地 - keymotek康谋科技有限公司是原虹科自动驾驶业务孵化出来的全新独立公司,专注于自动驾驶领域。我们以数据为驱动力,提供高性能的数据采集、记录、传输方案,针对各种驾驶场景进行精准的仿真模拟,以及对大量自动驾驶数据进行高效、高质量处理。我们的一站式服务能够满足自动驾驶领域研发测试的全流程需求,助力客户在自动驾驶领域取得更大突破。icon-default.png?t=N7T8https://keymotek.com/

这篇关于康谋技术 | 如何有效减少自动驾驶中传感器数据的存储量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/767758

相关文章

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Python中高级文本模式匹配与查找技术指南

《Python中高级文本模式匹配与查找技术指南》文本处理是编程世界的永恒主题,而模式匹配则是文本处理的基石,本文将深度剖析PythonCookbook中的核心匹配技术,并结合实际工程案例展示其应用,希... 目录引言一、基础工具:字符串方法与序列匹配二、正则表达式:模式匹配的瑞士军刀2.1 re模块核心AP