Leetcoder Day34| 动态规划part01

2024-03-02 18:20

本文主要是介绍Leetcoder Day34| 动态规划part01,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动态规划理论基础

什么是动态规划

动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。

所以动态规划的每一个状态一定是从上一个状态推导出来的,这一点有别于贪心算法,贪心是从局部直接选择最优,不需要推导。

比如背包问题:有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

贪心算法思路:每次拿物品选一个最大的或者最小的就完事了,和上一个状态没有关系。

动态规划思路:dp[j]是由dp[j-weight[i]]推导出来的,然后取max(dp[j], dp[j - weight[i]] + value[i])。

动态规划的解题步骤

一共有五部曲:

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

要先确定递推公式,然后在考虑初始化,因为一些情况是递推公式决定了dp数组如何初始化。

动态规划应该如何debug

写动规题目,代码出问题很正常!

找问题的最好方式就是把dp数组打印出来,看看究竟是不是按照自己思路推导的!

一些同学对于dp的学习是黑盒的状态,就是不清楚dp数组的含义,不懂为什么这么初始化,递推公式背下来了,遍历顺序靠习惯就是这么写的,然后一鼓作气写出代码,如果代码能通过万事大吉,通过不了的话就凭感觉改一改。这是一个很不好的习惯!

做动规的题目,写代码之前一定要把状态转移在dp数组的上具体情况模拟一遍,心中有数,确定最后推出的是想要的结果

然后再写代码,如果代码没通过就打印dp数组,看看是不是和自己预先推导的哪里不一样。

如果打印出来和自己预先模拟推导是一样的,那么就是自己的递归公式、初始化或者遍历顺序有问题

如果和自己预先模拟推导的不一样,那么就是代码实现细节有问题。

这样才是一个完整的思考过程,而不是一旦代码出问题,就毫无头绪的东改改西改改,最后过不了,或者说是稀里糊涂的过了。

可以自己先思考这三个问题:

  • 这道题目我举例推导状态转移公式了么?
  • 我打印dp数组的日志了么?
  • 打印出来了dp数组和我想的一样么?

509. 斐波那契数

斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1 给你n ,请计算 F(n) 。

示例 1:

  • 输入:2
  • 输出:1
  • 解释:F(2) = F(1) + F(0) = 1 + 0 = 1

示例 2:

  • 输入:3
  • 输出:2
  • 解释:F(3) = F(2) + F(1) = 1 + 1 = 2

按照动态规划5部曲:

  1. 确定dp数组(dp table)以及下标的含义:第i个数的斐波那契数值是dp[i]
  2. 确定递推公式:题目中已经给出,dp[i]=dp[i-1]+dp[i-2]
  3. dp数组如何初始化:题目中把如何初始化也直接给我们了:dp[0] = 0;dp[1] = 1;
  4. 确定遍历顺序:dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的
  5. 举例推导dp数组:0 1 1 2 3 5 当n=5
class Solution {        public int fib(int n) {if(n<2) return n;int[] dp= new int[n+1];dp[0]=0;dp[1]=1;for(int i=2;i<=n;i++){dp[i]=dp[i-1]+dp[i-2];}return dp[n];}
}

70. 爬楼梯

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

  • 输入: 2
  • 输出: 2
  • 解释: 有两种方法可以爬到楼顶。
    • 1 阶 + 1 阶
    • 2 阶

示例 2:

  • 输入: 3
  • 输出: 3
  • 解释: 有三种方法可以爬到楼顶。
    • 1 阶 + 1 阶 + 1 阶
    • 1 阶 + 2 阶
    • 2 阶 + 1 阶

本题爬到第一层楼梯有一种方法,爬到二层楼梯有两种方法。

那么第一层楼梯再跨两步就到第三层 ,第二层楼梯再跨一步就到第三层。

  1. 确定dp数组(dp table)以及下标的含义:dp[i]:爬到第i层有dp[i]种方法
  2. 确定递推公式:上i-1层时有dp[i-1]个方法,那么一次走一个台阶,上到第i层时有dp[i]种方法,或者上i-2层时有dp[i-2]个方法,那么一次走两个台阶,上到第i层时有dp[i]种方法。所以此时dp[i]=dp[i-1]+dp[i-2]
  3. dp数组如何初始化:i=1时,dp[1]=1,i=2时,dp[2]=2
  4. 确定遍历顺序:从前向后
  5. 举例推导dp数组:i=5时 1 2 3 5 8
class Solution {/**确定dp数组(dp table)以及下标的含义:dp[i]:爬到第i层有dp[i]种方法确定递推公式:上i-1层时有dp[i-1]个方法,那么一次走一个台阶,上到第i层时有dp[i]种方法,或者上i-2层时有dp[i-2]个方法,那么一次走两个台阶,上到第i层时有dp[i]种方法dp数组如何初始化:i=1时,dp[1]=1,i=2时,dp[2]=2确定遍历顺序:从前向后举例推导dp数组:i=5时 1 2 3 5 8*/public int climbStairs(int n) {if(n<3) return n;int[] dp= new int[n+1];dp[1]=1;dp[2]=2;for(int i=3;i<=n;i++){dp[i]=dp[i-1]+dp[i-2];}return dp[n];}
}

746. 使用最小花费爬楼梯

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

示例 1:

输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。

示例 2:

输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。
- 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
- 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
- 支付 1 ,向上爬一个台阶,到达楼梯顶部。
总花费为 6 

本题要求花费最少,那么有两个要注意的思路:

  • 尽可能多到达花费数少的台阶
  • 尽可能少花钱,也就意味着用更少的次数到达顶层。

从示例2可以看出,每次到达花费为1的台阶花费最少。

并且题设还给出了可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯” 也就是相当于一开始到下标 0或者下标 1 是不花费体力的, 从 下标 0 下标1 开始跳就要花费体力了。

  1. 确定dp数组以及下标的含义:dp[i]:爬到第i层的费用
  2. 确定递推公式:和上一题爬楼梯一样,上到i-1层时花费dp[i-1],那么一次走一个台阶,上到第i层时需要花费dp[i]=dp[i-1]+cost[i-1],或者上i-2层时花费dp[i-2]个方法,那么一次走两个台阶,上到第i层时需要花费dp[i]=dp[i-2]+cost[i-2],所以从i-1还是i-2出发,取决于在这两个台阶时,所需花费最少的,因此dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2])
  3. dp数组如何初始化:dp[0]=0, dp[1]=0;
  4. 确定遍历顺序:从前向后
  5. 举例推导dp数组:本题需要具体情况具体分析

本题还要注意楼层下标是从0开始的,因此顶楼是第cost.lenth层,所以返回和遍历的时候也要算上这一层

class Solution {public int minCostClimbingStairs(int[] cost) {int[] dp = new int[cost.length+1];dp[0]=0;dp[1]=0;for(int i=2; i<=cost.length;i++){ //这里注意是要小于等于,因为需要计算的是顶部n,而花费的长度直到n-1dp[i]=Math.min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2]);}return dp[cost.length];}
}

这篇关于Leetcoder Day34| 动态规划part01的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/767018

相关文章

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

Mybatis嵌套子查询动态SQL编写实践

《Mybatis嵌套子查询动态SQL编写实践》:本文主要介绍Mybatis嵌套子查询动态SQL编写方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、实体类1、主类2、子类二、Mapper三、XML四、详解总结前言MyBATis的xml文件编写动态SQL

SpringBoot实现Kafka动态反序列化的完整代码

《SpringBoot实现Kafka动态反序列化的完整代码》在分布式系统中,Kafka作为高吞吐量的消息队列,常常需要处理来自不同主题(Topic)的异构数据,不同的业务场景可能要求对同一消费者组内的... 目录引言一、问题背景1.1 动态反序列化的需求1.2 常见问题二、动态反序列化的核心方案2.1 ht

golang实现动态路由的项目实践

《golang实现动态路由的项目实践》本文主要介绍了golang实现动态路由项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习... 目录一、动态路由1.结构体(数据库的定义)2.预加载preload3.添加关联的方法一、动态路由1

Python Selenium动态渲染页面和抓取的使用指南

《PythonSelenium动态渲染页面和抓取的使用指南》在Web数据采集领域,动态渲染页面已成为现代网站的主流形式,本文将从技术原理,环境配置,核心功能系统讲解Selenium在Python动态... 目录一、Selenium技术架构解析二、环境搭建与基础配置1. 组件安装2. 驱动配置3. 基础操作模

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL