sklearn初探(五):自行实现朴素贝叶斯

2024-03-02 15:18

本文主要是介绍sklearn初探(五):自行实现朴素贝叶斯,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

sklearn初探(五):自行实现朴素贝叶斯

前言

严格上说,这个与sklearn关系不大,不过既然都是预测问题,归于这个系列也无伤大雅。这次我实现一个朴素贝叶斯学习算法(上一篇文章中的贝叶斯是高斯分布的,与这个有点区别)。数据集链接及完整源代码在文末给出。

概述

朴素贝叶斯方法是基于贝叶斯定理的一组有监督学习算法,即“简单”地假设每对特征之间相互独立。 给定一个类别 y y y和一个从 x 1 x_1 x1 x n x_n xn的相关的特征向量, 贝叶斯定理阐述了以下关系:
在这里插入图片描述
使用简单(naive)的假设-每对特征之间都相互独立:
在这里插入图片描述
对于所有的 :i 都成立,这个关系式可以简化为
在这里插入图片描述
由于在给定的输入中 P ( x 1 , . . . , x n ) P(x_1,...,x_n) P(x1,...,xn)是一个常量,我们使用下面的分类规则:
在这里插入图片描述
我们可以使用最大后验概率(Maximum A Posteriori, MAP) 来估计 P ( y ) P(y) P(y) P ( x i ∣ y ) P(x_i|y) P(xiy) ; 前者是训练集中类别 y y y 的相对频率。
各种各样的的朴素贝叶斯分类器的差异大部分来自于处理 P ( x i ∣ y ) P(x_i|y) P(xiy)分布时的所做的假设不同。
尽管其假设过于简单,在很多实际情况下,朴素贝叶斯工作得很好,特别是文档分类和垃圾邮件过滤。这些工作都要求 一个小的训练集来估计必需参数。(至于为什么朴素贝叶斯表现得好的理论原因和它适用于哪些类型的数据,请参见下面的参考。)
相比于其他更复杂的方法,朴素贝叶斯学习器和分类器非常快。 分类条件分布的解耦意味着可以独立单独地把每个特征视为一维分布来估计。这样反过来有助于缓解维度灾难带来的问题。
另一方面,尽管朴素贝叶斯被认为是一种相当不错的分类器,但却不是好的估计器(estimator),所以不能太过于重视从 predict_proba 输出的概率。

参考资料:

  • H. Zhang (2004). The optimality of Naive Bayes. Proc. FLAIRS.

思路

将正例与反例各平均分为十份,然后每次各取九份为训练集,剩下的为测试集。

数据分割

还是用pandas

bank_data = pd.read_csv("../datas/train_set.csv")
marital_set = list(bank_data['marital'])
education_set = list(bank_data['education'])
default_set = list(bank_data['default'])
housing_set = list(bank_data['housing'])
y_set = list(bank_data['y'])
data_set = []

为了后续处理方便,这里将dataframe类型全部转为list

生成测试集与训练集

# divide the data set
train_set = []
test_set = []
base1 = int(i*(yes_count/10))
base2 = int((i+1)*(yes_count/10))
base3 = yes_count + int(i*(no_count/10))
base4 = yes_count + int((i+1)*(no_count/10))
for j in range(0, base1):train_set.append(data_set[j])
for j in range(base1, base2):test_set.append(data_set[j])
if base2 < yes_count:for j in range(base2, yes_count):train_set.append(data_set[j])
for j in range(yes_count, base3):train_set.append(data_set[j])
for j in range(base3, base4):test_set.append(data_set[j])
if base4 < yes_count+no_count:for j in range(base4, yes_count+no_count):train_set.append(data_set[j])

朴素贝叶斯概率计算并统计命中数

for k in test_set:yes_mar = 0yes_edu = 0yes_def = 0yes_hsg = 0no_mar = 0no_edu = 0no_def = 0no_hsg = 0for t in train_set:if t[-1] == 0:  # noif t[0] == k[0]:no_mar += 1if t[1] == k[1]:no_edu += 1if t[2] == k[2]:no_def += 1if t[3] == k[3]:no_hsg += 1else:  # yesif t[0] == k[0]:yes_mar += 1if t[1] == k[1]:yes_edu += 1if t[2] == k[2]:yes_def += 1if t[3] == k[3]:yes_hsg += 1p_yes = yes_mar/tmp_yes_count*yes_edu/tmp_yes_count*yes_def/tmp_yes_count*yes_hsg/tmp_yes_count*P_yes# print(p_yes)p_no = no_mar/tmp_no_count*no_edu/tmp_no_count*no_def/tmp_no_count*no_hsg/tmp_no_count*P_no# print(p_no)if p_yes > p_no:if k[-1] == 1:predict += 1else:if k[-1] == 0:predict += 1

评分

# print(predict)
score = predict/test_len
print(score)
with open("../output/scoresOfMyBayes.txt", "a") as sob:sob.write("The score of test "+str(i)+" is "+str(score)+'\n')

最后得分高的吓人,有八次命中率100%,看来喂数据很重要。

源代码

import pandas as pdbank_data = pd.read_csv("../datas/train_set.csv")
marital_set = list(bank_data['marital'])
education_set = list(bank_data['education'])
default_set = list(bank_data['default'])
housing_set = list(bank_data['housing'])
y_set = list(bank_data['y'])
data_set = []
for i in range(0, len(marital_set)):tmp = [marital_set[i], education_set[i], default_set[i], housing_set[i], y_set[i]]data_set.append(tmp)
label_set = bank_data['y']
label_set = list(label_set)
yes_count = 0
for i in label_set:if i == 1:yes_count += 1
no_count = len(marital_set)-yes_count
# 10-means cross validate
for i in range(0, 10):# divide the data settrain_set = []test_set = []base1 = int(i*(yes_count/10))base2 = int((i+1)*(yes_count/10))base3 = yes_count + int(i*(no_count/10))base4 = yes_count + int((i+1)*(no_count/10))for j in range(0, base1):train_set.append(data_set[j])for j in range(base1, base2):test_set.append(data_set[j])if base2 < yes_count:for j in range(base2, yes_count):train_set.append(data_set[j])for j in range(yes_count, base3):train_set.append(data_set[j])for j in range(base3, base4):test_set.append(data_set[j])if base4 < yes_count+no_count:for j in range(base4, yes_count+no_count):train_set.append(data_set[j])# calculate beginstrain_len = len(train_set)test_len = len(test_set)print(test_len)print(test_set)print(train_set)tmp_no_count = 0tmp_yes_count = 0for j in train_set:if j[-1] == 0:tmp_no_count += 1else:tmp_yes_count += 1P_yes = tmp_yes_count/train_lenP_no = tmp_no_count/train_lenpredict = 0for k in test_set:yes_mar = 0yes_edu = 0yes_def = 0yes_hsg = 0no_mar = 0no_edu = 0no_def = 0no_hsg = 0for t in train_set:if t[-1] == 0:  # noif t[0] == k[0]:no_mar += 1if t[1] == k[1]:no_edu += 1if t[2] == k[2]:no_def += 1if t[3] == k[3]:no_hsg += 1else:  # yesif t[0] == k[0]:yes_mar += 1if t[1] == k[1]:yes_edu += 1if t[2] == k[2]:yes_def += 1if t[3] == k[3]:yes_hsg += 1p_yes = yes_mar/tmp_yes_count*yes_edu/tmp_yes_count*yes_def/tmp_yes_count*yes_hsg/tmp_yes_count*P_yes# print(p_yes)p_no = no_mar/tmp_no_count*no_edu/tmp_no_count*no_def/tmp_no_count*no_hsg/tmp_no_count*P_no# print(p_no)if p_yes > p_no:if k[-1] == 1:predict += 1else:if k[-1] == 0:predict += 1# print(predict)score = predict/test_lenprint(score)with open("../output/scoresOfMyBayes.txt", "a") as sob:sob.write("The score of test "+str(i)+" is "+str(score)+'\n')

数据集

https://download.csdn.net/download/swy_swy_swy/12407045

这篇关于sklearn初探(五):自行实现朴素贝叶斯的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/766552

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja