魔哈镜像迄今最大合成数据集 Cosmopedia

2024-03-01 21:04

本文主要是介绍魔哈镜像迄今最大合成数据集 Cosmopedia,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Cosmopedia

Cosmopedia 是一个由Mixtral-8x7B-Instruct-v0.1生成的合成教科书、博文、故事、帖子和WikiHow文章的数据集。该数据集包含超过3000万个文件和250亿个tokens,是HuggingFace用了10k张H100生成的迄今为止最大的开放合成数据集。受 Phi1.5 工作的启发,Cosmopedia 的初始版本为合成数据领域的研究奠定了基础。它作为不同主题的综合资源,强调其在后续迭代中进一步增强的潜力。

Cosmopedia分为八个部分,每个部分都源自不同的种子样本。这些分割包括 web_samples_v1 和 web_samples_v2,约占数据集的 75%,源自类似于 RefinedWeb 的内部 Web 数据集。斯坦福分部利用了来自 stanford.edu 的课程大纲,而故事分部则采用了 UltraChat 和 OpenHermes2.5 生成的叙述。此外,WikiHow、OpenStax、KhanAcademy 和 automathtext 拆分涉及与其各自来源相关的提示。

Dataset splits

Prompts都基于使用种子样本(例如网页摘录)的概念,并要求模型生成与该种子样本相关的新内容(教科书、故事、博客文章)。数据集由8个拆分组成,具体取决于拆分中使用的种子数据的来源。下图显示了Cosmopedia中种子数据集、世代格式和受众的分布:
在这里插入图片描述

除了去污染外,Cosmopedia将解释网络样本的主题聚类方法以及我们完善提示的迭代过程。主题聚类 我们的目标是以教科书等更干净的格式生成大量合成数据,涵盖广泛的主题(本质上,在网络上发现的任何有用的东西)

如何在魔哈上使用Cosmopedia

首先魔哈仓库已经完全同步了Cosmopedia数据集,并会在每天早上定期从 HuggingFace上更新最新版本的数据集

在这里插入图片描述

目前有两种方式可以通过魔哈·Moha仓库来加速您下载Cosmopedia数据集

设置魔哈官方地址直接下载数据集

export HF_ENDPOINT=https://moha.xiaoshiai.cn/huggingface

使用Moha专属CDN加速从HuggingFace上下载数据集
图片

联系我们

关注我们公众号 “晓石AI” 咨询更多问题
在这里插入图片描述

这篇关于魔哈镜像迄今最大合成数据集 Cosmopedia的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/763804

相关文章

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元

Linux lvm实例之如何创建一个专用于MySQL数据存储的LVM卷组

《Linuxlvm实例之如何创建一个专用于MySQL数据存储的LVM卷组》:本文主要介绍使用Linux创建一个专用于MySQL数据存储的LVM卷组的实例,具有很好的参考价值,希望对大家有所帮助,... 目录在Centos 7上创建卷China编程组并配置mysql数据目录1. 检查现有磁盘2. 创建物理卷3. 创

Nacos日志与Raft的数据清理指南

《Nacos日志与Raft的数据清理指南》随着运行时间的增长,Nacos的日志文件(logs/)和Raft持久化数据(data/protocol/raft/)可能会占用大量磁盘空间,影响系统稳定性,本... 目录引言1. Nacos 日志文件(logs/ 目录)清理1.1 日志文件的作用1.2 是否可以删除

使用Python获取JS加载的数据的多种实现方法

《使用Python获取JS加载的数据的多种实现方法》在当今的互联网时代,网页数据的动态加载已经成为一种常见的技术手段,许多现代网站通过JavaScript(JS)动态加载内容,这使得传统的静态网页爬取... 目录引言一、动态 网页与js加载数据的原理二、python爬取JS加载数据的方法(一)分析网络请求1

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

Spring Boot 整合 Redis 实现数据缓存案例详解

《SpringBoot整合Redis实现数据缓存案例详解》Springboot缓存,默认使用的是ConcurrentMap的方式来实现的,然而我们在项目中并不会这么使用,本文介绍SpringB... 目录1.添加 Maven 依赖2.配置Redis属性3.创建 redisCacheManager4.使用Sp

Python Pandas高效处理Excel数据完整指南

《PythonPandas高效处理Excel数据完整指南》在数据驱动的时代,Excel仍是大量企业存储核心数据的工具,Python的Pandas库凭借其向量化计算、内存优化和丰富的数据处理接口,成为... 目录一、环境搭建与数据读取1.1 基础环境配置1.2 数据高效载入技巧二、数据清洗核心战术2.1 缺失

Python处理超大规模数据的4大方法详解

《Python处理超大规模数据的4大方法详解》在数据的奇妙世界里,数据量就像滚雪球一样,越变越大,从最初的GB级别的小数据堆,逐渐演变成TB级别的数据大山,所以本文我们就来看看Python处理... 目录1. Mars:数据处理界的 “变形金刚”2. Dask:分布式计算的 “指挥家”3. CuPy:GPU

使用Vue-ECharts实现数据可视化图表功能

《使用Vue-ECharts实现数据可视化图表功能》在前端开发中,经常会遇到需要展示数据可视化的需求,比如柱状图、折线图、饼图等,这类需求不仅要求我们准确地将数据呈现出来,还需要兼顾美观与交互体验,所... 目录前言为什么选择 vue-ECharts?1. 基于 ECharts,功能强大2. 更符合 Vue