C语言第三十三弹---动态内存管理(上)

2024-03-01 18:12

本文主要是介绍C语言第三十三弹---动态内存管理(上),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

个人主页: 熬夜学编程的小林

💗系列专栏: 【C语言详解】 【数据结构详解】

动态内存管理

1、为什么要有动态内存分配

2、malloc和free

2.1、malloc

2.2、free

3、calloc和realloc

3.1、calloc

3.2、realloc

4、常见的动态内存的错误

总结


1、为什么要有动态内存分配

我们已经掌握的内存开辟方式有:
int val = 20;//在栈空间上开辟四个字节
char arr[10] = {0};//在栈空间上开辟10个字节的连续空间
但是上述的开辟空间的方式有两个特点:
空间开辟大小是固定的。
数组在申明的时候,必须指定数组的长度,数组空间⼀旦确定了大小不能调整
但是对于空间的需求,不仅仅是上述的情况。有时候我们需要的空间大小在程序运行的时候才能知
道,那数组的编译时开辟空间的方式就不能满足了。
C语言引入了动态内存开辟,让程序员自己可以申请和释放空间,就比较灵活了。

2、malloc和free

2.1、malloc

C语言提供了⼀个动态内存开辟的函数:
void* malloc (size_t size);//size为字节数
这个函数向内存申请一块连续可用的空间,并返回指向这块空间的指针。
如果开辟成功,则返回⼀个指向开辟好空间的指针。
如果开辟失败,则返回⼀个 NULL 指针,因此malloc的返回值⼀定要做检查。
返回值的类型是 void* ,所以malloc函数并不知道开辟空间的类型,具体在使用的时候使用者自己来决定。
如果参数 size 为0,malloc的行为是标准是未定义的,取决于编译器。

2.2、free

C语言提供了另外⼀个函数free,专门是用来做动态内存的释放和回收的,函数原型如下:
void free (void* ptr);
free函数用来释放动态开辟的内存。
如果参数 ptr 指向的空间不是动态开辟的,那free函数的行为是未定义的。
如果参数 ptr 是NULL指针,则函数什么事都不做。
malloc和free都声明在 stdlib.h 头文件中。
举个例子:
#include <stdio.h>
#include <stdlib.h>
int main()
{int num = 0;scanf("%d", &num);int arr[num] = {0};int* ptr = NULL;ptr = (int*)malloc(num*sizeof(int));if(NULL != ptr)//判断ptr指针是否为空 不为空则赋值{int i = 0;for(i=0; i<num; i++){*(ptr+i) = 0;}}free(ptr);//释放ptr所指向的动态内存ptr = NULL;//是否有必要? 建议手动置空,防止野指针问题return 0;
}

指针释放之后是否要手动置空,博主的建议是最好手动置空,防止出现野指针。

3、calloc和realloc

3.1、calloc

C语言还提供了⼀个函数叫 calloc calloc 函数也用来动态内存分配。原型如下:
void* calloc (size_t num, size_t size);
函数的功能是为 num 个大小为 size 的元素开辟⼀块空间,并且把空间的每个字节初始化为0。
与函数 malloc 的区别只在于 calloc 会在返回地址之前把申请的空间的每个字节初始化为全0。
举个例子:
#include <stdio.h>
#include <stdlib.h>
int main()
{int *p = (int*)calloc(10, sizeof(int));if(NULL != p){int i = 0;for(i=0; i<10; i++){printf("%d ", *(p+i));}}free(p);p = NULL;return 0;
}
输出结果:
所以如果我们对申请的内存空间的内容要求初始化,那么可以很方便的使用calloc函数来完成任务。

3.2、realloc

realloc函数的出现让动态内存管理更加灵活。
有时会我们发现过去申请的空间太小了,有时候我们又会觉得申请的空间过大了,那为了合理的时候内存,我们⼀定会对内存的大小做灵活的调整。那 realloc 函数就可以做到对动态开辟内存大小的调整。
函数原型如下:
void* realloc (void* ptr, size_t size);
ptr 是要调整的内存地址
size 调整之后新大小(字节数)
返回值为调整之后的内存起始位置。
这个函数调整原内存空间大小的基础上,还会将原来内存中的数据移动到新的空间。
realloc在调整内存空间的是存在两种情况:
情况1:原有空间之后有足够大的空间
情况2:原有空间之后没有足够大的空间
情况1
当是情况1 的时候,要扩展内存就直接原有内存之后直接追加空间,原来空间的数据不发生变化。
情况2
当是情况2 的时候,原有空间之后没有足够多的空间时,扩展的方法是:在堆空间上另找⼀个合适大小的连续空间来使用。这样函数返回的是⼀个新的内存地址。
由于上述的两种情况,realloc函数的使用就要注意⼀些
#include <stdio.h>
#include <stdlib.h>
int main()
{int* ptr = (int*)malloc(100);if (ptr != NULL){//业务处理}else{return 1;}//扩展容量//代码1 - 直接将realloc的返回值放到ptr中ptr = (int*)realloc(ptr, 1000);//这样可以吗?(如果申请失败会如何?)// realloc可能申请空间失败,因此不推荐直接赋值给ptr,// 而是创建一个临时指针变量,如果确定申请成功再将临时指针变量赋值给ptr,即代码2方式//代码2 - 先将realloc函数的返回值放在p中,不为NULL,在放ptr中int* p = NULL;p = realloc(ptr, 1000);if (p != NULL){ptr = p;// 推荐使用该方式,防止空间申请失败情况}//业务处理free(ptr);return 0;
}

总结:动态开辟的空间建议不要直接赋值给想要处理数据的指针变量,而是先判断再进行赋值。

4、常见的动态内存的错误

1、对NULL指针的解引用操作

void test(){int *p = (int *)malloc(INT_MAX/4);*p = 20;//如果p的值是NULL,就会有问题free(p);}

2、对动态开辟空间的越界访问

void test(){int i = 0;int *p = (int *)malloc(10*sizeof(int));if(NULL == p){exit(EXIT_FAILURE);}for(i=0; i<=10; i++){*(p+i) = i;//当i是10的时候越界访问}free(p);}

3、对非动态开辟内存使用free释放

void test(){int a = 10;int *p = &a;free(p);//ok? free只能释放动态开辟的内存空间}

4、使用free释放一块动态开辟内存的一部分

void test(){int *p = (int *)malloc(100);p++;free(p);//p不再指向动态内存的起始位置}

5、对同一块动态内存多次释放

void test(){int *p = (int *)malloc(100);free(p);free(p);//重复释放}

6、动态开辟内存忘记释放(内存泄漏)

void test(){int *p = (int *)malloc(100);if(NULL != p){*p = 20;}}
int main(){test();while(1);}
忘记释放不再使用的动态开辟的空间会造成内存泄漏。
切记:动态开辟的空间⼀定要释放,并且正确释放。

总结


本篇博客就结束啦,谢谢大家的观看,如果公主少年们有好的建议可以留言喔,谢谢大家啦!

这篇关于C语言第三十三弹---动态内存管理(上)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/763351

相关文章

gradle第三方Jar包依赖统一管理方式

《gradle第三方Jar包依赖统一管理方式》:本文主要介绍gradle第三方Jar包依赖统一管理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录背景实现1.顶层模块build.gradle添加依赖管理插件2.顶层模块build.gradle添加所有管理依赖包

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

HTML5中的Microdata与历史记录管理详解

《HTML5中的Microdata与历史记录管理详解》Microdata作为HTML5新增的一个特性,它允许开发者在HTML文档中添加更多的语义信息,以便于搜索引擎和浏览器更好地理解页面内容,本文将探... 目录html5中的Mijscrodata与历史记录管理背景简介html5中的Microdata使用M

Spring 基于XML配置 bean管理 Bean-IOC的方法

《Spring基于XML配置bean管理Bean-IOC的方法》:本文主要介绍Spring基于XML配置bean管理Bean-IOC的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录一. spring学习的核心内容二. 基于 XML 配置 bean1. 通过类型来获取 bean2. 通过

python uv包管理小结

《pythonuv包管理小结》uv是一个高性能的Python包管理工具,它不仅能够高效地处理包管理和依赖解析,还提供了对Python版本管理的支持,本文主要介绍了pythonuv包管理小结,具有一... 目录安装 uv使用 uv 管理 python 版本安装指定版本的 Python查看已安装的 Python

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

基于Python和MoviePy实现照片管理和视频合成工具

《基于Python和MoviePy实现照片管理和视频合成工具》在这篇博客中,我们将详细剖析一个基于Python的图形界面应用程序,该程序使用wxPython构建用户界面,并结合MoviePy、Pill... 目录引言项目概述代码结构分析1. 导入和依赖2. 主类:PhotoManager初始化方法:__in