【Ai生态开发】Spring AI上架,打造专属业务大模型,AI开发再也不是难事!

本文主要是介绍【Ai生态开发】Spring AI上架,打造专属业务大模型,AI开发再也不是难事!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好 这里是苏泽 后端是工作 ai是兴趣 

对于ai的产生我的立场是拥抱ai的  是希望拿他作为提升能力的工具  那么这一篇带大家来学习如何使用ai打造一个专属的业务大模型 

需求 就是说假设现在有一个 商城系统 里面有查询订单的api和获取商品购买方式的api   用户只需要输入 “帮我看看我前几天买过最便宜的衣服”  经过语言处理 ai就能够调用 查询订单的api并在里面自动的添加查询条件以及 排序条件  这是我们的目标  本文就是来讲解实现这样的目标

Spring AI介绍

Spring AI 是 AI 工程师的一个应用框架,它提供了一个友好的 API 和开发 AI 应用的抽象,旨在简化 AI 应用的开发工序。

提供对常见模型的接入能力,目前已经上架 https://start.spring.io/,提供大家测试访问。(请注意虽然已经上架 start.spring.io,但目前还是在 Spring 私服,未发布至 Maven 中央仓库)

基本知识讲解:

函数调用

函数调用(Function Calling)是OpenAI在2023年6月13日对外发布的新能力。根据OpenAI官方博客描述,函数调用能力可以让大模型输出一个请求调用函数的消息,其中包含所需调用的函数信息、以及调用函数时所携带的参数信息。这是一种将大模型(LLM)能力与外部工具/API连接起来的新方式。

比如用户输入:

What’s the weather like in Tokyo?

使用function calling,可实现函数执行get_current_weather(location: string),从而获取函数输出,即得到对应地理位置的天气情况。这其中,location这个参数及其取值是借助大模型能力从用户输入中抽取出来的,同时,大模型判断得到调用的函数为get_current_weather

开发人员可以使用大模型的function calling能力实现:

  • 在进行自然语言交流时,通过调用外部工具回答问题(类似于ChatGPT插件);
  • 将自然语言转换为调用API调用,或数据库查询语句;
  • 从文本中抽取结构化数据
  • 其它

实现步骤

1. 添加依赖

 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-openai-spring-boot-starter</artifactId></dependency><!-- 配置 Spring 仓库 --><repositories><repository><id>spring-milestones</id><name>Spring Milestones</name><url>https://repo.spring.io/milestone</url><snapshots><enabled>false</enabled></snapshots></repository></repositories>

2. 配置 OpenAI 相关参数

spring:
  ai:
    openai:
      base-url: # 支持 openai-sb、openai-hk 等中转站点,如用官方则不填
      api-key: sk-xxxx
 

3.创建一个Spring Controller处理HTTP请求。

在Spring项目中创建一个Controller类,用于处理提取要素的HTTP请求和生成调用的API和变量集合。

import com.google.gson.Gson;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RestController;import java.util.HashMap;
import java.util.Map;@RestController
public class ElementExtractionController {@Autowiredprivate ElementExtractionService elementExtractionService;@PostMapping("/extract-elements")public ResponseEntity<Map<String, Object>> extractElements(@RequestBody String userInput) {Map<String, Object> result = elementExtractionService.extractElements(userInput);return ResponseEntity.ok(result);}
}

3.创建一个ElementExtractionService服务类来提取要素

创建一个服务类,用于封装提取要素的逻辑。在这个服务类中,可以使用自然语言处理技术来分析用户输入并提取需求和变量。可以使用现有的开源NLP库或API,如NLTK、SpaCy、Stanford CoreNLP、Google Cloud Natural Language API等
这里使用NLTK库来进行文本分析和实体识别,以提取用户输入中的需求和变量:

import org.springframework.stereotype.Service;
import edu.stanford.nlp.simple.Document;
import edu.stanford.nlp.simple.Sentence;import java.util.HashMap;
import java.util.List;
import java.util.Map;@Service
public class ElementExtractionService {public Map<String, Object> extractElements(String userInput) {// 使用NLTK库进行文本分析和实体识别Document doc = new Document(userInput);List<Sentence> sentences = doc.sentences();// 提取需求String requirement = extractRequirement(sentences);// 提取变量Map<String, String> variables = extractVariables(sentences);// 构建结果Map<String, Object> result = new HashMap<>();result.put("api", requirement);result.put("variables", variables);return result;}private String extractRequirement(List<Sentence> sentences) {// 在这里根据实际需求,从句子中提取需求// 可以使用关键词提取、模式匹配等方法// 这里示例直接返回第一句话作为需求if (!sentences.isEmpty()) {return sentences.get(0).text();}return "";}private Map<String, String> extractVariables(List<Sentence> sentences) {// 在这里根据实际需求,从句子中提取变量// 可以使用实体识别、关键词提取等方法// 这里示例直接从第一句话中提取名词作为变量Map<String, String> variables = new HashMap<>();if (!sentences.isEmpty()) {Sentence sentence = sentences.get(0);for (String word : sentence.words()) {if (isNoun(word)) {variables.put(word, "true");}}}return variables;}private boolean isNoun(String word) {// 在这里根据实际需求,判断一个词是否为名词// 可以使用词性标注、词典匹配等方法// 这里示例简单判断是否以大写字母开头,作为名词的判断条件return Character.isUpperCase(word.charAt(0));}
}

那么下一步 :


4.封装一个API来操作open ai的Assistants API

创建一个Spring Service来操作OpenAI Assistants API。

创建一个服务类,用于封装操作OpenAI Assistants API的逻辑。

import com.google.gson.Gson;
import okhttp3.*;import org.springframework.stereotype.Service;import java.io.IOException;@Service
public class OpenAIAssistantsService {public String callOpenAIAssistantsAPI(String prompt) {OkHttpClient client = new OkHttpClient();MediaType mediaType = MediaType.parse("application/json");JsonObject requestBody = new JsonObject();requestBody.addProperty("prompt", prompt);requestBody.addProperty("max_tokens", 32);requestBody.addProperty("stop", null);RequestBody body = RequestBody.create(mediaType, requestBody.toString());Request request = new Request.Builder().url(OPENAI_API_URL).post(body).addHeader("Authorization", "Bearer " + OPENAI_API_KEY).build();try {Response response = client.newCall(request).execute();if (response.isSuccessful()) {String responseBody = response.body().string();JsonObject jsonObject = new Gson().fromJson(responseBody, JsonObject.class);return jsonObject.getAsJsonObject("choices").get(0).getAsJsonObject().get("text").getAsString();} else {System.out.println("OpenAI Assistants API调用失败: " + response.code() + " - " + response.message());}} catch (IOException e) {System.out.println("OpenAI Assistants API调用异常: " + e.getMessage());}return null;}
}

创建一个自定义函数签名。

创建一个函数,它将调用其他项目中的API,并返回结果。

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;@Service
public class CustomFunctionService {@Autowiredprivate OtherAPIService otherAPIService;public String customFunction(String apiId, String inputParameters) {// 根据API的ID筛选需要调用的APIString apiEndpoint = getApiEndpoint(apiId);// 调用其他项目中的API,并进行处理String result = otherAPIService.callOtherAPI(apiEndpoint, inputParameters);// 对结果进行处理,并返回return "处理后的结果:" + result;}private String getApiEndpoint(String apiId) {//这里还会有很多具体业务的api就不一一列举了// 根据API的ID获取相应的API的URL或其他信息// 这里可以根据实际情况进行实现if (apiId.equals("api1")) {return "https://api.example.com/api1";} else if (apiId.equals("api2")) {return "https://api.example.com/api2";} else {throw new IllegalArgumentException("无效的API ID: " + apiId);}}
}

创建一个Spring Controller来调用自定义函数。

创建一个Controller类,它将调用自定义函数,并返回结果。

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RestController;import java.util.HashMap;
import java.util.Map;@RestController
public class CustomFunctionController {@Autowiredprivate CustomFunctionService customFunctionService;@PostMapping("/call-custom-function")public ResponseEntity<String> callCustomFunction(@RequestBody String userInput) {String result = customFunctionService.customFunction(userInput);return ResponseEntity.ok(result);}
}

在上面提取要素的服务(ElementExtractionService)的基础上,我们可以再封装一个Assistants服务,它将接受用户的请求并调用提取要素的服务。然后,Assistants服务将提取的要素和变量(uid)作为输入传递给封装了OpenAI的服务(OpenAIAssistantsService),并根据要素选择适当的API进行调用,并返回对应的结果。

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;import java.util.Map;@Service
public class AssistantsService {@Autowiredprivate ElementExtractionService elementExtractionService;@Autowiredprivate OpenAIAssistantsService openAIAssistantsService;public String processUserRequest(String userInput) {// 提取要素Map<String, Object> elements = elementExtractionService.extractElements(userInput);// 获取要素和变量String requirement = (String) elements.get("api");Map<String, String> variables = (Map<String, String>) elements.get("variables");String uid = (String) elements.get("uid");// 调用OpenAI Assistants服务String result = openAIAssistantsService.callOpenAIAssistantsAPI(requirement, variables, uid);return result;}
}

AssistantsService类接受用户的请求,并调用ElementExtractionService来提取要素。然后,它获取要素、变量和uid,并将它们作为参数传递给OpenAIAssistantsService的callOpenAIAssistantsAPI方法。该方法根据要素选择适当的API进行调用,并返回结果。

具体的业务实现“提取要素”的逻辑部分

请注意,为了实现这个过程,还需要修改ElementExtractionService中提取要素的逻辑,以确保这个服务能符合具体业务的逻辑  例如我提到的 “帮我看看我买过最便宜的衣服”

import org.springframework.stereotype.Service;
import edu.stanford.nlp.simple.Document;
import edu.stanford.nlp.simple.Sentence;import java.util.HashMap;
import java.util.List;
import java.util.Map;@Service
public class ElementExtractionService {public Map<String, Object> extractElements(String userInput) {// 使用NLTK库进行文本分析和实体识别Document doc = new Document(userInput);List<Sentence> sentences = doc.sentences();// 提取需求String requirement = extractRequirement(sentences);// 提取变量Map<String, String> variables = extractVariables(sentences);// 构建结果Map<String, Object> result = new HashMap<>();result.put("api", requirement);result.put("variables", variables);return result;}private String extractRequirement(List<Sentence> sentences) {// 在这里根据实际需求,从句子中提取需求// 可以使用关键词提取、模式匹配等方法// 这里示例直接返回第一句话作为需求if (!sentences.isEmpty()) {return sentences.get(0).text();}return "";}private Map<String, String> extractVariables(List<Sentence> sentences) {// 在这里根据实际需求,从句子中提取变量// 可以使用实体识别、关键词提取等方法// 这里示例从第一句话中提取名词作为变量,并根据特定模式进行匹配Map<String, String> variables = new HashMap<>();if (!sentences.isEmpty()) {Sentence sentence = sentences.get(0);List<String> words = sentence.words();for (int i = 0; i < words.size() - 1; i++) {String currentWord = words.get(i);String nextWord = words.get(i + 1);if (isNoun(currentWord) && nextWord.equals("的")) {variables.put(currentWord, "true");}}}return variables;}private boolean isNoun(String word) {// 在这里根据实际需求,判断一个词是否为名词// 可以使用词性标注、词典匹配等方法// 这里示例简单判断是否以大写字母开头,作为名词的判断条件return Character.isUpperCase(word.charAt(0));}
}

我将extractVariables方法进行了修改。现在它从第一句话中提取名词作为变量,并且根据特定模式进行匹配。特定模式是判断当前词是否为名词,以及下一个词是否为"的"。如果匹配成功,则将当前词作为变量存储。

这样我们就基本实现了一开始的那个目标:

假设现在有一个 商城系统 里面有查询订单的api和获取商品购买方式的api   用户只需要输入 “帮我看看我前几天买过最便宜的衣服”  经过语言处理 ai就能够调用 查询订单的api并在里面自动的添加查询条件以及 排序条件  这是我们的目标  本文就是来讲解实现这样的目标

更长远的目标:

希望能够开发出一款中间件(作为一个服务被注册到项目当中) 能够作为open ai 和具体项目的桥梁  即在开发配置当中我输入我的已有项目的服务的签名   那这个助手能够根据用户的自然语言输入 自动的去调用执行 项目中已有的各种服务 来做各种各样的复杂的数据库查询 等操作

本文所受启发 参考文献:

  1. Function calling and other API updates: https://openai.com/blog/function-calling-and-other-api-updates
  2. OpenAI assistants in LangChain: https://python.langchain.com/docs/modules/agents/agent_types/openai_assistants
  3. Multi-Input Tools in LangChain: https://python.langchain.com/docs/modules/agents/tools/multi_input_tool
  4. examples/Assistants_API_overview_python.ipynb: https://github.com/openai/opena...
  5. The Spring Boot Actuator is the one dependency you should include in every project (danvega.dev)
  6. Assistants API won't allow external web request - API - OpenAI Developer Forum

 

本文只是简单提供一个可行的思路做参考 真正做出可拓展性的ai开发插件道路还很长 先在这立个小flag吧  希望今年能够完成这个小目标  如果有一起开发这个项目的伙伴可以跟我来讨论哦

 

这篇关于【Ai生态开发】Spring AI上架,打造专属业务大模型,AI开发再也不是难事!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/763202

相关文章

springboot集成Lucene的详细指南

《springboot集成Lucene的详细指南》这篇文章主要为大家详细介绍了springboot集成Lucene的详细指南,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以跟随小编一起... 目录添加依赖创建配置类创建实体类创建索引服务类创建搜索服务类创建控制器类使用示例以下是 Spring

Java调用Python的四种方法小结

《Java调用Python的四种方法小结》在现代开发中,结合不同编程语言的优势往往能达到事半功倍的效果,本文将详细介绍四种在Java中调用Python的方法,并推荐一种最常用且实用的方法,希望对大家有... 目录一、在Java类中直接执行python语句二、在Java中直接调用Python脚本三、使用Run

使用Python开发Markdown兼容公式格式转换工具

《使用Python开发Markdown兼容公式格式转换工具》在技术写作中我们经常遇到公式格式问题,例如MathML无法显示,LaTeX格式错乱等,所以本文我们将使用Python开发Markdown兼容... 目录一、工具背景二、环境配置(Windows 10/11)1. 创建conda环境2. 获取XSLT

Java根据IP地址实现归属地获取

《Java根据IP地址实现归属地获取》Ip2region是一个离线IP地址定位库和IP定位数据管理框架,这篇文章主要为大家详细介绍了Java如何使用Ip2region实现根据IP地址获取归属地,感兴趣... 目录一、使用Ip2region离线获取1、Ip2region简介2、导包3、下编程载xdb文件4、J

浅析如何使用xstream实现javaBean与xml互转

《浅析如何使用xstream实现javaBean与xml互转》XStream是一个用于将Java对象与XML之间进行转换的库,它非常简单易用,下面将详细介绍如何使用XStream实现JavaBean与... 目录1. 引入依赖2. 定义 JavaBean3. JavaBean 转 XML4. XML 转 J

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

Android开发环境配置避坑指南

《Android开发环境配置避坑指南》本文主要介绍了Android开发环境配置过程中遇到的问题及解决方案,包括VPN注意事项、工具版本统一、Gerrit邮箱配置、Git拉取和提交代码、MergevsR... 目录网络环境:VPN 注意事项工具版本统一:android Studio & JDKGerrit的邮

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程