复现nerfstudio并训练自己制作的数据集

2024-03-01 08:20

本文主要是介绍复现nerfstudio并训练自己制作的数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

网站:安装 - nerfstudio

GitHub - nerfstudio-project/nerfstudio:NeRF 的协作友好工作室

安装之前要确保电脑上已经有CUDA11.8或以上版本(更高版本的可以安装11.8的toolkit)

创建环境

conda create --name nerfstudio -y python=3.8
conda activate nerfstudio
python -m pip install --upgrade pip

安装依赖

首先,如果安装了2.0.1之前的PyTorch版本,则应卸载PyTorch、functhor和miny-cuda nn的早期版本。可以通过以下命令实现:

pip uninstall torch torchvision functorch tinycudann

结合CUDA11.8,安装Pytorch2.1.2

pip install torch==2.1.2+cu118 torchvision==0.16.2+cu118 --extra-index-url https://download.pytorch.org/whl/cu118

安装CUDA所需要的扩展,通过以下命令实现:

conda install -c "nvidia/label/cuda-11.8.0" cuda-toolkit

安装tiny-cuda-nn包

这里先要从github上下载tiny-cuda-nn,然后在Microsoft VIsual C++的环境下编译资源。所以如果直接执行:

pip install ninja git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch

可能会报错,提示:

× python setup.py egg_info did not run successfully.│ exit code: 1╰─> [8 lines of output]Traceback (most recent call last):File "<string>", line 2, in <module>File "<pip-setuptools-caller>", line 34, in <module>File "C:\Users\xxx\AppData\Local\Temp\pip-req-build-lz_n7l05\bindings/torch\setup.py", line 53, in <module>raise RuntimeError("Could not locate a supported Microsoft Visual C++ installation")RuntimeError: Could not locate a supported Microsoft Visual C++ installationBuilding PyTorch extension for tiny-cuda-nn version 1.7Obtained compute capability 86 from PyTorch[end of output]

这里参考了这两篇博客:安装tiny-cuda-nn时报错RuntimeError: Could not locate a supported Microsoft Visual C++ installation-CSDN博客、nerfstudio搭建 win11踩坑记录之tinycudann_nerfstudio windows-CSDN博客]

我直接说一下我的操作:

首先安装Visual Studio 2019的installer,并且选择“使用C++的桌面开发”,如下所示:

在这里插入图片描述

安装好以后记住安装路径,如果忘记了,可以在这里查看:

在这里插入图片描述

然后在path中添加环境变量,路径就是你的Visual Studio 2019安装路径后面加上\VC\Tools\MSVC\14.29.30133\bin\Hostx64\x64。

比如我的就是D:\Software\VisualStudio2019\VC\Tools\MSVC\14.29.30133\bin\Hostx64\x64:

在这里插入图片描述

在这里插入图片描述

添加好环境变量后,在虚拟环境nerfstudio中进入到 xxxxx\VC\Auxiliary\Build这个路径下,然后输入以下指令打开脚本,

.\vcvars64.bat

或者

start vcvars64.bat

接下来在弹出的新的命令行中重新输入:

pip install ninja git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch

即可完成tiny-cuda-nn的安装。

安装ffmpeg

得到项目并配置好环境后,还需要在电脑上安装ffmpeg,否则会报错未在电脑上找到ffmpeg,这个时候我们需要单独安装ffmpeg。首先,进入ffmpeg官网:Download FFmpeg。找到以下选项,并下载essential版本。

在这里插入图片描述

在这里插入图片描述

下载压缩包并解压后,将里面bin文件夹添加进系统PATH环境变量,该文件夹下有三个exe文件:

在这里插入图片描述
在这里插入图片描述

接下来,在命令行输入:

ffmpeg -version

就可以查到ffmpeg版本了:

在这里插入图片描述

训练自己制作的数据集:

这里就不说怎么用官方提供的数据集,看看怎么把自己拍的照片拿去训练:

首先把自己拍的照片文件夹保存在一个路径下,比如我的是:D:\Project\nerfstudio\data\demorobo\images
在这里插入图片描述

官网给的指导是:

ns-process-data {video,images,polycam,record3d} --data {DATA_PATH} --output-dir {PROCESSED_DATA_DIR}

那我们就在命令行输入:

 ns-process-data images --data data/demorobo/images --output-dir data/demorobo  

这样就可以对我们的照片进行colmap操作,并且进行下采样:

在这里插入图片描述

得到的文件夹结构如下:

在这里插入图片描述

然后执行训练,官网说法是:

ns-train nerfacto --data {PROCESSED_DATA_DIR}

我们可以这样写:

ns-train nerfacto --data data/demorobo  

如果此时报错无法下载权重:

Saving config to: outputs\demorobo\nerfacto\2024-02-29_113035\config.yml             experiment_config.py:136
Saving checkpoints to: outputs\demorobo\nerfacto\2024-02-29_113035\nerfstudio_models           trainer.py:136
[11:30:36] Auto image downscale factor of 1                                                 nerfstudio_dataparser.py:484
Loading data batch ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00
Started threads
Setting up evaluation dataset...
Caching all 7 images.Downloading: "https://download.pytorch.org/models/alexnet-owt-7be5be79.pth" to C:\Users\28291/.cache\torch\hub\checkpoints\alexnet-owt-7be5be79.pth                                                      2%|███▋                                                                                                                                                         | 5.41M/233M [11:36<8:07:48, 8.16kB/s]
......
......
......
TimeoutError: [WinError 10060] 由于连接方在一段时间后没有正确答复或连接的主机没有反应,连接尝试失败。

可以手动下载权重,在命令行输入:

curl -o C:/Users/28291/.cache/torch/hub/checkpoints/alexnet-owt-7be5be79.pth https://download.pytorch.org/models/alexnet-owt-7be5be79.pth

这样就可以正常训练了,能看到以下内容说明训练开始:
在这里插入图片描述

在服务器:http://localhost:7007里就可以实时查看训练进度。

看到以下内容说明训练结束:

在这里插入图片描述

输入ctrl+c退出训练。

评估训练指标

如果想评估训练指标,官网给的指令是:

ns-eval --load-config={PATH_TO_CONFIG} --output-path=output.json

就是把输出文件夹替换掉这个目录即可:

ns-eval --load-config=outputs/demorobo/nerfacto/2024-02-29_120354/config.yml --output-path=output.json

这样可以在项目根目录下的看到一个output.json文件,用记事本打开就可以看到指标:

{"experiment_name": "demorobo","method_name": "nerfacto","checkpoint": "outputs\\demorobo\\nerfacto\\2024-02-29_120354\\nerfstudio_models\\step-000029999.ckpt","results": {"psnr": 22.653573989868164,"psnr_std": 2.9266517162323,"ssim": 0.7372194528579712,"ssim_std": 0.10289175808429718,"lpips": 0.08905620872974396,"lpips_std": 0.026574086397886276,"num_rays_per_sec": 244670.8125,"num_rays_per_sec_std": 78561.875,"fps": 0.46850264072418213,"fps_std": 0.1504325270652771}
}

如果想在关闭后查看渲染情况,官网给的指令是:

ns-viewer --load-config {outputs/.../config.yml}

比如我的就是:

ns-viewer --load-config outputs/demorobo/nerfacto/2024-02-29_120354/config.yml 

然后点击Viser就可以打开可视化工具了。因为我训练的图片数量比较少,且分辨率比较低,所以目前只能得到这样的效果:

在这里插入图片描述

当然也可以在这里查看深度图等其他类型的可视化:

在这里插入图片描述

至于更多的使用方式,可以在官网查看介绍视频,说的很详细。

这篇关于复现nerfstudio并训练自己制作的数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/761803

相关文章

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R

详解如何在SpringBoot控制器中处理用户数据

《详解如何在SpringBoot控制器中处理用户数据》在SpringBoot应用开发中,控制器(Controller)扮演着至关重要的角色,它负责接收用户请求、处理数据并返回响应,本文将深入浅出地讲解... 目录一、获取请求参数1.1 获取查询参数1.2 获取路径参数二、处理表单提交2.1 处理表单数据三、

Spring Validation中9个数据校验工具使用指南

《SpringValidation中9个数据校验工具使用指南》SpringValidation作为Spring生态系统的重要组成部分,提供了一套强大而灵活的数据校验机制,本文给大家介绍了Spring... 目录1. Bean Validation基础注解常用注解示例在控制器中应用2. 自定义约束验证器定义自

C#实现高性能Excel百万数据导出优化实战指南

《C#实现高性能Excel百万数据导出优化实战指南》在日常工作中,Excel数据导出是一个常见的需求,然而,当数据量较大时,性能和内存问题往往会成为限制导出效率的瓶颈,下面我们看看C#如何结合EPPl... 目录一、技术方案核心对比二、各方案选型建议三、性能对比数据四、核心代码实现1. MiniExcel

SQL常用操作精华之复制表、跨库查询、删除重复数据

《SQL常用操作精华之复制表、跨库查询、删除重复数据》:本文主要介绍SQL常用操作精华之复制表、跨库查询、删除重复数据,这些SQL操作涵盖了数据库开发中最常用的技术点,包括表操作、数据查询、数据管... 目录SQL常用操作精华总结表结构与数据操作高级查询技巧SQL常用操作精华总结表结构与数据操作复制表结

Redis中的数据一致性问题以及解决方案

《Redis中的数据一致性问题以及解决方案》:本文主要介绍Redis中的数据一致性问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Redis 数据一致性问题的产生1. 单节点环境的一致性问题2. 网络分区和宕机3. 并发写入导致的脏数据4. 持

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息