【论文综述+多模态】腾讯发布的多模态大语言模型(MM-LLM)综述(2024.02)

2024-03-01 07:44

本文主要是介绍【论文综述+多模态】腾讯发布的多模态大语言模型(MM-LLM)综述(2024.02),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文链接:24.02.MM-LLMs: Recent Advances in MultiModal Large Language | 国内-链接
实时网站:https://mm-llms.github.io
参考说明1-readpaper:https://mp.weixin.qq.com/s/ESUVe1aTYFLVJ10S9c1dBg
在这里插入图片描述

一、什么是MM-LLM ?

多模态大语言模型:Multimodal Large Language Models
MM-LLM = 预训练单模态模型( 含LLMs) + 微调对齐所有模态 + 输出调整

MM-LLMs 利用现成的预训练单模态基础模型,
特别是强大的大型语言模型(LLMs), 作为认知核心,赋予各种多模态任务能力。
LLMs 提供了稳健的语言生成、zero-shot 迁移能力和上下文学习(ICL)等可取特性

在这一领域中,主要关注点是通过多模态预训练(MM PT, Pre-Training)+ 多模态指令调整(MM IT)pipeline 来优化模态之间的对齐,以及与人类意图的对齐(aligning with human intent)。

1.1 发展历程

  1. 最初的研究
    图像-文本理解(例如 BLIP-2,LLaVA,MiniGPT-4OpenFlamingo 等工作);
    视频-文本理解(例如 VideoChat,Video-ChatGPT 和 LLaMA-VID 等工作);
    音频-文本理解(例如 Qwen-Audio)等任务。

  2. 随后,MM-LLMs 的能力扩展到支持特定模态生成。
    这包括具有图像-文本输出的任务,例如 GILL,Kosmos-2,Emu 和 MiniGPT-5 等;
    以及具有语音/音频-文本输出的任务,例如 SpeechGPT 和 AudioPaLM 等工作

  3. 最近的研究努力集中在模仿类人任意-任意模态转换
    将 LLMs 与外部工具结合起来,实现,现接近任意-任意的多模态理解和生成,
    例如 Visual-ChatGPT,HuggingGPT 和 AudioGPT

二、模型框架

参考链接:https://zhuanlan.zhihu.com/p/680487634

我们将一般模型架构分解为五个组件

  1. 模态编码器(Modality Encoder) : 直接使用
  2. 输入映射器 (Input projector): 将其他模态的编码特征与文本特征空间对齐
  3. LLM 骨干 (LLM backbone): 直接使用
  4. 输出映射器 (Output Projector) : 将生成模型与 LLM 的输出指令对齐
  5. 模态生成器 (Modality Generator):直接使用

结构见下图2:
在这里插入图片描述

2.1 模态编码器(Modality Encoder):

** 负责对不同的模态输入IX进行编码,得到对应的特征FX。IX可以是图像、视频、音频、3D等不同类型的输入。常用的编码器包括:
图像编码器:NFNet-F6、ViT、CLIP ViT、Eva-CLIP ViT
视频编码器:对视频均匀采样成5帧,进行与图像类似的预处理
音频编码器:C-Former、HuBERT、BEATs、Whisper
3D点云编码器:ULIP-2、PointBERT
统一编码器:ImageBind,支持图像、视频、文本、音频、热图等多种模态

2.2 输入投影器 (Input Projector)

负责将编码后的其他模态特征FX投影到文本特征空间T,得到对齐的特征PX。常用的实现方法有:
直接线性投影或多层感知机
交叉注意力:利用可训练的查询向量与编码特征FX进行压缩,得到固定长度的表示,并直接输入LLM或进行交叉注意力融合
Q-Former:从FX中提取相关特征,作为提示PX
P-Former:生成参考提示,对Q-Former生成的提示进行对齐约束

2.3 LLM骨干网络(LLM Backbone):

用预训练的大型语言模型作为核心,负责对齐后的特征进行语义理解、推理和决策,并输出文本输出t和来自其他模态的信号令牌SX。常用的LLM包括:

  • Flan-T5
  • ChatGLM
  • UL2
  • Qwen
  • Chinchilla
  • OPT
  • PaLM
  • LLaMA
  • LLaMA-2
  • Vicuna

三、训练流程

模态编码器、LLM 骨干和模态生成器通常保持冻结状态
MM-LLMs 的训练流程可以划分为两个主要阶段:MM PT 和 MM IT。

3.1 MM PT (任意模态到文字)

在 PT 阶段,通常利用 X-Text 数据集(见附录),通过优化预定义的目标来训练输入和输出映射器
以实现各种模态之间的对齐。 X-Text 数据集一般包括图像-文本、视频-文本和音频-文本。

3.2 MM IT (指令微调 )

指令微调=监督微调(SFT)和根据人类反馈进行强化学习(RLHF)

MM IT 是一种使用指令格式的数据集对预训练的 MM-LLMs 进行微调的方法
通过这个过程,MM-LLMs 可以通过遵循新的指令来泛化到未见过的任务,从而提高 zero-shot 性能。
SFT 数据集可以构造为单轮 QA 或多轮对话。

四、部分模型性能测评

红色代表在该项测评最高分,蓝色是第二高分

23.12 VILA: On Pre-training for Visual Language Models
更高的图像分辨率可以为模型提供更多的视觉细节,有利于需要细粒度细节的任务。
例如,LLaVA-1.5 和 VILA 使用了 336336 的分辨率,
而 Qwen-VL 和 MiniGPT-v2 则采用了 448
448 的分辨率
在这里插入图片描述

总结

当前的 MM-LLMs 主要支持以下模态:图像、视频、音频、3D 和文本

移动/轻量级部署:在资源受限的平台上部署 MM-LLMs 并同时实现最佳性能,比如低功耗移动设备和物联网设备,轻量级实现至关重要。在这方面的一个显著进展是 MobileVLM

最近,有许多类似的研究致力于轻量化 MM-LLMs,在性能相当或几乎没有损失的情况下,实现了高效的计算和推理,包括 TinyGPT-4、Vary-toy、Mobile-Agent、MoE-LLaVA 和 MobileVLM V2。然而,这一途径需要进一步探索以实现进一步的发展

一些发展趋势:

  1. 从专注于多模态理解到生成特定模态,进一步发展成为任意-任意模态转换(例如,MiniGPT-4 -> MiniGPT-5 -> NExT-GPT);

  2. 从 MM PT 进展到 SFT,再到 RLHF,训练流程不断完善,努力更好地与人类意图保持一致,并增强模型的对话交互能力(例如,BLIP-2 -> InstructBLIP -> DRESS);

  3. 接纳多样化的模态扩展(例如,BLIP-2 -> X-LLM 和 InstructBLIP -> X-InstructBLIP);

  4. 加入更高质量的训练数据集(例如,LLaVA -> LLaVA-1.5);(5)采用更高效的模型架构,从 BLIP-2 和 DLP 中复杂的 Q- 和 P-Former 输入映射模块过渡到 VILA 中更简单但同样有效的线性映射器。

附录

模型按功能分类

I:图像,V:视频,A/S:音频/语音(Audio/Speech),T:文本。
I D I_D ID:文档理解, I B I_B IB:输出边界框, I M I_M IM:输出分割掩码和 I R I_R IR:输出检索到的图像。
在这里插入图片描述

X-Text 数据集的详细信息见表 3。

在这里插入图片描述

指令微调的数据集

在这里插入图片描述

这篇关于【论文综述+多模态】腾讯发布的多模态大语言模型(MM-LLM)综述(2024.02)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/761692

相关文章

C语言逗号运算符和逗号表达式的使用小结

《C语言逗号运算符和逗号表达式的使用小结》本文详细介绍了C语言中的逗号运算符和逗号表达式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习... 在C语言中逗号“,”也是一种运算符,称为逗号运算符。 其功能是把两个表达式连接其一般形式为:表达

Go语言实现桥接模式

《Go语言实现桥接模式》桥接模式是一种结构型设计模式,它将抽象部分与实现部分分离,使它们可以独立地变化,本文就来介绍一下了Go语言实现桥接模式,感兴趣的可以了解一下... 目录简介核心概念为什么使用桥接模式?应用场景案例分析步骤一:定义实现接口步骤二:创建具体实现类步骤三:定义抽象类步骤四:创建扩展抽象类步

GO语言实现串口简单通讯

《GO语言实现串口简单通讯》本文分享了使用Go语言进行串口通讯的实践过程,详细介绍了串口配置、数据发送与接收的代码实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录背景串口通讯代码代码块分解解析完整代码运行结果背景最近再学习 go 语言,在某宝用5块钱买了个

Java领域模型示例详解

《Java领域模型示例详解》本文介绍了Java领域模型(POJO/Entity/VO/DTO/BO)的定义、用途和区别,强调了它们在不同场景下的角色和使用场景,文章还通过一个流程示例展示了各模型如何协... 目录Java领域模型(POJO / Entity / VO/ DTO / BO)一、为什么需要领域模

GO语言zap日志库理解和使用方法示例

《GO语言zap日志库理解和使用方法示例》Zap是一个高性能、结构化日志库,专为Go语言设计,它由Uber开源,并且在Go社区中非常受欢迎,:本文主要介绍GO语言zap日志库理解和使用方法的相关资... 目录1. zap日志库介绍2.安装zap库3.配置日志记录器3.1 Logger3.2 Sugared

Go语言中如何进行数据库查询操作

《Go语言中如何进行数据库查询操作》在Go语言中,与数据库交互通常通过使用数据库驱动来实现,Go语言支持多种数据库,如MySQL、PostgreSQL、SQLite等,每种数据库都有其对应的官方或第三... 查询函数QueryRow和Query详细对比特性QueryRowQuery返回值数量1个:*sql

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

GO语言中gox交叉编译的实现

《GO语言中gox交叉编译的实现》本文主要介绍了GO语言中gox交叉编译的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、安装二、使用三、遇到的问题1、开启CGO2、修改环境变量最近在工作中使用GO语言进行编码开发,因

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Go语言中json操作的实现

《Go语言中json操作的实现》本文主要介绍了Go语言中的json操作的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、jsOChina编程N 与 Go 类型对应关系️ 二、基本操作:编码与解码 三、结构体标签(Struc