探索MediaPipe自定义机器学习模型

2024-03-01 04:59

本文主要是介绍探索MediaPipe自定义机器学习模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

MediaPipe支持人脸识别、目标检测、图像分类、人像分割、手势识别、文本分类、语音分类。每个模块都有对应的模型,但是原有模型可能比较大、推理耗时比较长,我们可以自定义模型来进行进行优化。

 

目录

一、训练准备

1、准备数据

1.1 原始数据

1.2 标注数据

2、简化模型

2.1 减少标签

2.2 剪裁边缘

2.3 模型复用

3、训练迭代

二、目标检测训练

1、准备安装包

2、准备数据集

3、加载数据集

4、训练模型

5、验证模型

6、导出模型


一、训练准备

1、准备数据

在自定义模型前,准备两种数据:原始数据、标注数据。

1.1 原始数据

找到足够多的数据去训练模型比较具有挑战性。首先,需要确认使用的图像或文本有没版权限制。为了避免版权问题,我们可以自己制作数据,也可以去Kaggle寻找数据集。有些dataset已经加了标注,有些则没有标注。

1.2 标注数据

我们可以用Label Studio来添加标注。支持3种形式安装:pip、Anaconda、docker。这里以pip安装为例:

# Requires Python >=3.7 <=3.9
pip install label-studio# Start the server at http://localhost:8080
label-studio

2、简化模型

2.1 减少标签

选择2-5个类别给图像打标签,遵从简单原则。

2.2 剪裁边缘

样本图像尽可能保留完整轮廓。剩下一部分样本进行裁剪,这样利于提高模型的鲁棒性。

2.3 模型复用

由于MediaPipe Model Maker使用迁移学习,即复用原有模型,使用新数据来重新训练原来的模型。这样可以节省训练时间,节约模型数据。Model Maker可用于训练物体检测、手势检测、图像分类、音频分类的模型。通过删除数据分类的层级,然后使用新数据来重建,最终输出新模型,框架图如下:

大概需要100个样本,其中80%用于训练,10%用于测试,剩下10%用于验证。 

3、训练迭代

第一次训练的模型比较难达到理想效果。那么,我们需要花时间去选择合适样本,添加恰当标注,从而提升成功率。添加样本,或者修改样本,反复迭代训练,不断完善。

二、目标检测训练

1、准备安装包

安装mediepipe model maker:

pip install --upgrade pip
pip install mediapipe-model-maker

导入object detector包:

import os
import tensorflow as tf
assert tf.__version__.startswith('2')
from google.colab import filesfrom mediapipe_model_maker import object_detector

2、准备数据集

从官网下载数据集,以小狗动物为例:dog dataset

并且声明模型的训练路径、验证路径:

train_dataset_path = "dogs/train"
validation_dataset_path = "dogs/validate"

3、加载数据集

加载训练、验证的数据集:

train_data = object_detector.Dataset.from_pascal_voc_folder('dogs copy/train',cache_dir="/tmp/od_data/train")validate_data = object_detector.Dataset.from_pascal_voc_folder('dogs copy/validate',cache_dir="/tmp/od_data/validatation")

4、训练模型

使用样本数据来训练TensorFlow模型,设置相关参数:

  • batch_size=8
  • learning_rate=0.3
  • epochs=50

根据参数选项、数据路径来创建模型:

hparams = object_detector.HParams(batch_size=8, learning_rate=0.3, epochs=50, export_dir='exported_model')
options = object_detector.ObjectDetectorOptions(supported_model=object_detector.SupportedModels.MOBILENET_V2,hparams=hparams)
model = object_detector.ObjectDetector.create(train_data=train_data,validation_data=validate_data,options=options)

5、验证模型

使用未用过的图像来验证模型:

loss, coco_metrics = model.evaluate(validate_data, batch_size=4)
print(f"Validation loss: {loss}")
print(f"Validation coco metrics: {coco_metrics}")

6、导出模型

以TensorFlow Lite的格式导出模型,然后下载下来:

model.export_model('dogs.tflite')
!ls exported_model
files.download('exported_model/dogs.tflite')

这篇关于探索MediaPipe自定义机器学习模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/u011686167/article/details/131410669
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/761294

相关文章

Druid连接池实现自定义数据库密码加解密功能

《Druid连接池实现自定义数据库密码加解密功能》在现代应用开发中,数据安全是至关重要的,本文将介绍如何在​​Druid​​连接池中实现自定义的数据库密码加解密功能,有需要的小伙伴可以参考一下... 目录1. 环境准备2. 密码加密算法的选择3. 自定义 ​​DruidDataSource​​ 的密码解密3

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

spring-gateway filters添加自定义过滤器实现流程分析(可插拔)

《spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔)》:本文主要介绍spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔),本文通过实例图... 目录需求背景需求拆解设计流程及作用域逻辑处理代码逻辑需求背景公司要求,通过公司网络代理访问的请求需要做请

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应