t-SNE数据降维(2维3维)及可视化

2024-03-01 03:48
文章标签 数据 可视化 降维 sne

本文主要是介绍t-SNE数据降维(2维3维)及可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

(最近看了一个叫光谱特征在后门攻击中的用法,读完之后发现是用了一个SVD也就是奇异值分解做了降维,然后用残差网络的representation层残差与残差的奇异值分解后的右奇异值矩阵的第一行做乘法得到correlation,疑惑得很什么时候相关性可以这么算了。于是想到降维可以不用SVD可以用TSNE,就写一下这一块的东西,融合了别人写的二维和三维的可视化)

 t-SNE全称为t-distributed Stochastic Neighbor Embedding,翻译为t-随机邻近嵌入,它是一种embedding模型,用于高维空间中的数据映射到低维空间中,并保留数据集的局部特性,该算法在论文中非常常见,主要用于高维数据的降维和可视化。
    t-SNE可以算是目前效果最好的数据降维和可视化方法之一,当我们想对高维数据集进行分类,但又不清楚这个数据集有没有很好的可分性时,可以通过t-SNE将数据投影到2维或3维空间中观察一下:如果在低维空间中具有可分性,则数据是可分的;如果在低维空间中不可分,则可能是因为数据集本身不可分,或者数据集中的数据不适合投影到低维空间。
    t-SNE将数据点之间的相似度转化为条件概率,原始空间中数据点的相似度由高斯联合分布表示,嵌入空间中数据点的相似度由学生t分布表示。通过原始空间和嵌入空间的联合概率分布的KL散度(用于评估两个分布的相似度的指标,经常用于评估机器学习模型的好坏)来评估嵌入效果的好坏,即将有关KL散度的函数作为损失函数(loss function),通过梯度下降算法最小化损失函数,最终获得收敛结果。要注意t-SNE的缺点很明显:占用内存较多、运行时间长。

1 降维
    首先,通过一个简单的示例看一下t-SNE的降维效果:输入4个5维的数据,通过t-SNE将其降维成2维的数据,代码如下:

import numpy as np
from sklearn.manifold import TSNE"""将3维数据降维2维"""# 4个3维的数据
x = np.array([[0, 0, 0, 1, 2], [0, 1, 1, 3, 5], [1, 0, 1, 7, 2], [1, 1, 1, 10, 22]])
# 嵌入空间的维度为2,即将数据降维成2维
ts = TSNE(n_components=2)
# 训练模型
ts.fit_transform(x)
# 打印结果
print(ts.embedding_)

       


2 S型曲线的降维与可视化
    S型曲线中的数据是高维的数据,不同的颜色表示不同的数据点。当我们通过t-SNE将数据嵌入到2维空间中后,可以看到数据点之间的类别信息被完整地保留了下来。代码如下:

import matplotlib.pyplot as plt
from sklearn import manifold, datasets"""对S型曲线数据的降维和可视化"""# 生成1000个S型曲线数据
x, color = datasets.samples_generator.make_s_curve(n_samples=1000, random_state=0)		# x是[1000,2]的2维数据,color是[1000,1]的一维数据n_neighbors = 10
n_components = 2# 创建自定义图像
fig = plt.figure(figsize=(8, 8))		# 指定图像的宽和高
plt.suptitle("Dimensionality Reduction and Visualization of S-Curve Data ", fontsize=14)		# 自定义图像名称# 绘制S型曲线的3D图像
ax = fig.add_subplot(211, projection='3d')		# 创建子图
ax.scatter(x[:, 0], x[:, 1], x[:, 2], c=color, cmap=plt.cm.Spectral)		# 绘制散点图,为不同标签的点赋予不同的颜色
ax.set_title('Original S-Curve', fontsize=14)
ax.view_init(4, -72)		# 初始化视角# t-SNE的降维与可视化
ts = manifold.TSNE(n_components=n_components, init='pca', random_state=0)
# 训练模型
y = ts.fit_transform(x)
ax1 = fig.add_subplot(2, 1, 2)
plt.scatter(y[:, 0], y[:, 1], c=color, cmap=plt.cm.Spectral)
ax1.set_title('t-SNE Curve', fontsize=14)
# 显示图像
plt.show()

    效果如下图所示:

 



3 手写数字数据集的降维与可视化
    手写数字数据集是一个经典的图片分类数据集,数据集中包含0-9这10个数字的灰度图片,每张图片以8*8共64个像素点表示。具体代码如

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.manifold import TSNE# 加载数据
def get_data():""":return: 数据集、标签、样本数量、特征数量"""digits = datasets.load_digits(n_class=10)data = digits.data		# 图片特征label = digits.target		# 图片标签n_samples, n_features = data.shape		# 数据集的形状return data, label, n_samples, n_features# 对样本进行预处理并画图
def plot_embedding(data, label, title):""":param data:数据集:param label:样本标签:param title:图像标题:return:图像"""x_min, x_max = np.min(data, 0), np.max(data, 0)data = (data - x_min) / (x_max - x_min)		# 对数据进行归一化处理fig = plt.figure()		# 创建图形实例ax = plt.subplot(111)		# 创建子图# 遍历所有样本for i in range(data.shape[0]):# 在图中为每个数据点画出标签plt.text(data[i, 0], data[i, 1], str(label[i]), color=plt.cm.Set1(label[i] / 10),fontdict={'weight': 'bold', 'size': 7})plt.xticks()		# 指定坐标的刻度plt.yticks()plt.title(title, fontsize=14)# 返回值return fig# 主函数,执行t-SNE降维
def main():data, label , n_samples, n_features = get_data()		# 调用函数,获取数据集信息print('Starting compute t-SNE Embedding...')ts = TSNE(n_components=2, init='pca', random_state=0)# t-SNE降维reslut = ts.fit_transform(data)# 调用函数,绘制图像fig = plot_embedding(reslut, label, 't-SNE Embedding of digits')# 显示图像plt.show()# 主函数
if __name__ == '__main__':main()

    效果截图如下:

 

4 3D可视化效果图

import tensorflow as tf
import numpy as np
from sklearn.manifold import TSNE  # TSNE集成在了sklearn中
import matplotlib.pylab as plt
from mpl_toolkits.mplot3d import Axes3D  # 进行3D图像绘制import input_data  # MNIST的数据操作文件mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
saver = tf.train.import_meta_graph('model/model.ckpt.meta')  # tensorflow加载神经网络图结构
gragh = tf.get_default_graph()image_input = gragh.get_tensor_by_name('Placeholder:0')  # 获得图中预定义的输入,即MNIST图像
label_input = gragh.get_tensor_by_name('Placeholder_1:0')  # 获得对应图像的标签
predict = gragh.get_tensor_by_name('fco/BiasAdd:0')  # 获得网络的输出值with tf.Session() as sess:sess.run(tf.global_variables_initializer())saver.restore(sess, tf.train.latest_checkpoint("model"))  # tensorflow恢复神经网络参数到当前图# 方便快速计算,只取训练集前面2000个数据进行可视化。pre = sess.run(predict,feed_dict={image_input: mnist.test.images[:2000, :], label_input: mnist.test.labels[:2000, :]})# TSNE进行降维计算,n_components代表降维维度embedded = TSNE(n_components=3).fit_transform(pre)# 对数据进行归一化操作x_min, x_max = np.min(embedded, 0), np.max(embedded, 0)embedded = embedded / (x_max - x_min)# 创建显示的figurefig = plt.figure()ax = Axes3D(fig)# 将数据对应坐标输入到figure中,不同标签取不同的颜色,MINIST共0-9十个手写数字ax.scatter(embedded[:, 0], embedded[:, 1], embedded[:, 2],c=plt.cm.Set1(np.argmax(mnist.test.labels[:2000, :], axis=1) / 10.0))# 关闭了plot的坐标显示plt.axis('off')plt.show()

3D可视化效果图,不同颜色代表不同的数字类别

在这里插入图片描述

这篇关于t-SNE数据降维(2维3维)及可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/761117

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元