Apache IoTDB 查询引擎源码阅读——DataNode 上 DriverTask 调度与执行

本文主要是介绍Apache IoTDB 查询引擎源码阅读——DataNode 上 DriverTask 调度与执行,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景

Apache IoTDB 查询引擎目前采用 MPP 架构,一条查询 SQL 大致会经历下图几个阶段:

FragmentInstance 是分布式计划被拆分后实际分发到各个节点进行执行的实例。由于每个节点会同时接收来自于多个并发 Query 的多个 FragmentInstance,这些 FragmentInstance 在执行时可能由于等待上游数据而处于阻塞状态、或者数据就绪可以执行、或者超时需要被取消。因此,需要一个较为合理的调度策略,保证在分配给 FragmentInstance 的有限资源内,能够满足高并发的查询需求,同时尽可能避免出现饿死或者死锁情况。

在具体实现中,查询引擎里真正执行查询计算的算子树 Operator Tree 是类 Driver 的一个成员变量,Driver 负责控制Operator 的运行。DriverTask 是 Driver 的一层封装,也是调度模块真正调度的对象。一个 FragmentInstance 可能对应多个 Driver,而 Driver 与 DriverTask 是一一对应的。

本文主要介绍 Apache IoTDB 查询引擎在 DataNode 上如何调度和执行 DriverTask。相关代码位于包 org.apache.iotdb.db.mpp.execution.schedule

DriverTask 调度与执行

调度模块维护了两个队列:

  • ReadyQueue:处于 Ready 状态的 DriverTask 队列

  • TimeoutQueue:所有当前节点未结束的 DriverTask 按照超时时间排序的队列

同时处于 Blocked 状态的 DriverTask 会被放入集合 blockedTasks 进行记录。

总体而言,DriverTask 的调度执行参考了协程思想和操作系统任务调度机制。分配给查询引擎调度模块的线程数是固定的,可以通过配置项更改。来自于不同节点的 FragmentInstance 的 DriverTask 在 init 时会被加入 ReadyQueue。执行线程会不断拉取 ReadyQueue 队头的任务进行执行,每次只执行一个时间片,然后根据 DriverTask 的状态决定是否要将 DriverTask 重新放回 ReadyQueue。可以结合下图帮助理解:

![截屏2023-02-15 19.32.21](/Users/lly/Desktop/截屏2023-02-15 19.32.21.png)

DriverTask 完整的生命周期与状态

如上图所示,目前 DriverTask 的状态包括:

  • Ready:就绪状态。在以下场景,DriverTask 会处于 Ready 状态:

  • 新建 DriverTask 时,状态会被设置为 Ready,然后加入到 ReadyQueue 中。

  • 当 DriverTask 依赖的上游数据就绪时,DataBlockManager 会调用回调接口,将其状态从 Blocked 改为 Ready,并从 blockedTasks 中移除。

  • 分配的时间片用完,会进入 ReadyQueue,并且状态从 Running 转换成 Ready。

  • Blocked:阻塞状态。在以下场景,DriverTask 会处于阻塞状态:

  • 依赖的上游数据为空,需要等待上游数据时,会从 Running 状态改为 Blocked,并放入 blockedTasks。

  • 向下游输出数据的 buffer 已满暂时无法发送数据,会从 Running 状态改为 Blocked。

  • Running:执行中状态。当处于 Ready 的 DriverTask 被线程调度时,从 ReadyQueue 中移除,状态变为 Running。

  • Finished:完成状态。DriverTask 变为完成状态后,调度模块会清理此 DriverTask 的信息。

  • Aborted:终止状态。在任何情况下,出现以下情况,DriverTask 会立即进入终止状态,并释放所有申请的资源。

  • 执行超时

  • 用户中断了查询

  • 不可恢复的 Exception

调度模块重要组件

上图包含了调度模块的一些重要组件,下面对调度模块重要组件进行介绍,理解这些组件的作用可以帮助您更好地阅读源码。

Worker Thread

真正负责执行 DriverTask 的物理线程,具体实现类为 DriverSchedulerThread。数量可通过配置参数进行配置,实例启动后不可改变。

DriverSchedulerThread 的实现:

  • 生命周期和查询引擎一致。

  • 内部主体为无限循环,只通过 InterruptedException 中断(当服务停止时会发送 InterruptedException)。

  • 循环会尝试去 ReadyQueue 拉取队头的 DriverTask。若队列为空,则 Worker Thread 进入阻塞状态。

  • Worker Thread 在执行 DriverTask 时,会调用 DriverTask.processFor(),然后返回 ListenableFuture。为了保证 Worker Thread 不会因为某个执行时间较长的 DriverTask 导致其他 DriverTask 饿死,引入了时间片机制。当 Driver#processFor 方法会接收一个时间片长度作为参数,processFor 会运行时间片长度的时间,执行时间超过时间片长度时,processFor() 方法会结束运行,然后返回一个 Future。(目前的时间片为代码内置的常量: 100ms。后续可能会考虑变成用户可配置的项。但是需要有范围值保护。过大的时间片会使得此机制失效,过小的则会频繁触发 DriverTask 的状态切换,影响执行效率。)

  • 根据返回的 Future,会有如下操作:

  • 若 Future 被 cancel,则终止当前 DriverTask 的执行,将其设置为 Aborted 状态。

  • 若执行完成,则将 DriverTask 置为 Finished 状态。

  • 若时间片用完,则将 DriverTask 置为 Ready 状态,计算并更新调度权重,将 DriverTask 加入到 ReadyQueue。

  • 若是因阻塞导致执行权让出,则将 DriverTask 置为 Blocked 状态,并注册 Blocked → Ready 的回调逻辑。

具体流程可以结合下图进行理解:

代码实现为:

public void execute(DriverTask task) throws InterruptedException {long startNanos = ticker.read();// try to switch it to RUNNINGif (!scheduler.readyToRunning(task)) {return;}IDriver driver = task.getDriver();CpuTimer timer = new CpuTimer();ListenableFuture<?> future = driver.processFor(EXECUTION_TIME_SLICE);CpuTimer.CpuDuration duration = timer.elapsedTime();// If the future is cancelled, the task is in an error and should be thrown.if (future.isCancelled()) {task.setAbortCause(DriverTaskAbortedException.BY_ALREADY_BEING_CANCELLED);scheduler.toAborted(task);return;}long quantaScheduledNanos = ticker.read() - startNanos;ExecutionContext context = new ExecutionContext();context.setCpuDuration(duration);context.setScheduledTimeInNanos(quantaScheduledNanos);context.setTimeSlice(EXECUTION_TIME_SLICE);if (driver.isFinished()) {scheduler.runningToFinished(task, context);return;}if (future.isDone()) {scheduler.runningToReady(task, context);} else {scheduler.runningToBlocked(task, context);future.addListener(() -> {try (SetThreadName driverTaskName2 =new SetThreadName(task.getDriver().getDriverTaskId().getFullId())) {scheduler.blockedToReady(task);}},listeningExecutor);}}
}

Sentinel Thread

负责监控 DriverTask 超时的物理线程,全局唯一,具体实现类为 DriverTaskTimeoutSentinelThread。

DriverTaskTimeoutSentinelThread 的实现:

  • 内部主体为无限循环,只通过 InterruptedException 中断(当服务停止时会发送 InterruptedException)。

  • 尝试去 timeoutQueue 拉取队头的 DriverTask。若队列为空,则 Sentinel Thread 进入睡眠状态。

  • Sentinel 在拉取 DriverTask 时,会判断当前系统时间是否超过了超时时间:

  • 若超时,则将状态置为 Aborted 状态,走超时处理逻辑。

  • 若未超时,则睡眠至超时时间,将状态置为 Aborted 状态,走超时处理逻辑。

可以结合下图进行理解:

优先调度队列 ReadyQueue

目前实现参考了 Trino 的 MultilevelSplitQueue,在 IoTDB 里的实现类为 MultilevelPriorityQueue,设计思路可以参考博客 Trino 源码阅读 —— MultiLevelSplitQueue 调度机制。

该队列特点:

  • 线程安全。

  • 是一个阻塞队列,有最大长度限制。

  • 存在任务降级机制,设计初衷是避免任务出现饿死,提升 CPU 利用率。

超时队列 TimeoutQueue

根据 DriverTask 的超时 deadline 排序的最大堆,超时时间越早的 DriverTask 就会被先做超时检查。

该队列长度应该有最大限制。

该队列特点:

  • 线程安全。

  • 按照 DriverTask 的调度权重排序,在 O(lgn) 的时间复杂度内完成队列元素的 pull 和 push。

  • 有根据 DriverTask 的 id 做索引查询的能力,能够在 O(lgn) 的时间复杂度内完成随机元素的删除。

阻塞任务集合 BlockedTasks

处于 Blocked 状态的 DriverTask 的集合,线程安全,在 O(1) 的时间复杂度内完成元素的读取。

调度器 DriverScheduler

调度模块的核心,持有线程资源,即之前提到的 WorkerThread 和 SentinelThread。维护了 ReadyQueue 和 TimeoutQueue,FragmentInstance 可以通过 DriverScheduler 提交 Driver,DriverScheduler 负责将 Driver 封装成 DriverTask 并进一步执行。

DriverScheduler 负责切换 DriverTask 的状态,主要通过内部类 Scheduler 完成。ITaskScheduler 定义了切换 DriverTask 状态的接口,Scheduler 实现了这些接口。接口定义如下:

/** the scheduler interface of {@link DriverTask} */
public interface ITaskScheduler {/*** Switch a task from {@link DriverTaskStatus#BLOCKED} to {@link DriverTaskStatus#READY}.** @param task the task to be switched.*/void blockedToReady(DriverTask task);/*** Switch a task from {@link DriverTaskStatus#READY} to {@link DriverTaskStatus#RUNNING}.** @param task the task to be switched.* @return true if it's switched to the target status successfully, otherwise false.*/boolean readyToRunning(DriverTask task);/*** Switch a task from {@link DriverTaskStatus#RUNNING} to {@link DriverTaskStatus#READY}.** @param task the task to be switched.* @param context the execution context of last running.*/void runningToReady(DriverTask task, ExecutionContext context);/*** Switch a task from {@link DriverTaskStatus#RUNNING} to {@link DriverTaskStatus#BLOCKED}.** @param task the task to be switched.* @param context the execution context of last running.*/void runningToBlocked(DriverTask task, ExecutionContext context);/*** Switch a task from {@link DriverTaskStatus#RUNNING} to {@link DriverTaskStatus#FINISHED}.** @param task the task to be switched.* @param context the execution context of last running.*/void runningToFinished(DriverTask task, ExecutionContext context);/*** Switch a task to {@link DriverTaskStatus#ABORTED}.** @param task the task to be switched.*/void toAborted(DriverTask task);
Blocked→ Ready

总体流程可以参考下图:

红色三角处表示,当获取到锁之后,还需要再次确认 DriverTask 状态是否符合预期(在排队等锁时可能被 SentinelThread 改为 Aborted 状态)。若为 Aborted 状态,则后续流程全部跳过。

代码实现为:

@Override
public void blockedToReady(DriverTask task) {task.lock();try {if (task.getStatus() != DriverTaskStatus.BLOCKED) {return;}task.setStatus(DriverTaskStatus.READY);QUERY_METRICS.recordTaskQueueTime(BLOCK_QUEUED_TIME, System.nanoTime() - task.getLastEnterBlockQueueTime());task.setLastEnterReadyQueueTime(System.nanoTime());task.resetLevelScheduledTime();readyQueue.push(task);blockedTasks.remove(task);} finally {task.unlock();}
}
Running -> Ready

计算并更新调度权重,将 DriverTask 加入到 ReadyQueue。

@Override
public void runningToReady(DriverTask task, ExecutionContext context) {task.lock();try {if (task.getStatus() != DriverTaskStatus.RUNNING) {return;}task.updateSchedulePriority(context);task.setStatus(DriverTaskStatus.READY);task.setLastEnterReadyQueueTime(System.nanoTime());readyQueue.push(task);} finally {task.unlock();}
}
Running -> Blocked

更新调度权重,然后将 DriverTask 加入 blockedTasks。

@Override
public void runningToBlocked(DriverTask task, ExecutionContext context) {task.lock();try {if (task.getStatus() != DriverTaskStatus.RUNNING) {return;}task.updateSchedulePriority(context);task.setStatus(DriverTaskStatus.BLOCKED);task.setLastEnterBlockQueueTime(System.nanoTime());blockedTasks.add(task);} finally {task.unlock();}
}
Running -> Finished

更新调度权重,清理 DriverTask 相关信息。

@Override
public void runningToFinished(DriverTask task, ExecutionContext context) {task.lock();try {if (task.getStatus() != DriverTaskStatus.RUNNING) {return;}task.updateSchedulePriority(context);task.setStatus(DriverTaskStatus.FINISHED);clearDriverTask(task);} finally {task.unlock();}
}
toAborted

由于同一个 FragmentInstance 的 DriverTask 之间有依赖性,一个 DriverTask 被置为 Aborted,其余相关的 DriverTask 也应该被置为 Aborted。

@Override
public void toAborted(DriverTask task) {try (SetThreadName driverTaskName =new SetThreadName(task.getDriver().getDriverTaskId().getFullId())) {task.lock();try {// If a task is already in an end state, it indicates that the task is finalized in other// threads.if (task.isEndState()) {return;}logger.warn("The task {} is aborted. All other tasks in the same query will be cancelled",task.getDriverTaskId());clearDriverTask(task);} finally {task.unlock();}QueryId queryId = task.getDriverTaskId().getQueryId();Map<FragmentInstanceId, Set<DriverTask>> queryRelatedTasks = queryMap.get(queryId);if (queryRelatedTasks != null) {for (Set<DriverTask> fragmentRelatedTasks : queryRelatedTasks.values()) {if (fragmentRelatedTasks != null) {for (DriverTask otherTask : fragmentRelatedTasks) {if (task.equals(otherTask)) {continue;}otherTask.lock();try {otherTask.setAbortCause(DriverTaskAbortedException.BY_QUERY_CASCADING_ABORTED);clearDriverTask(otherTask);} finally {otherTask.unlock();}}}}}}
}

这篇关于Apache IoTDB 查询引擎源码阅读——DataNode 上 DriverTask 调度与执行的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/760948

相关文章

Oracle查询表结构建表语句索引等方式

《Oracle查询表结构建表语句索引等方式》使用USER_TAB_COLUMNS查询表结构可避免系统隐藏字段(如LISTUSER的CLOB与VARCHAR2同名字段),这些字段可能为dbms_lob.... 目录oracle查询表结构建表语句索引1.用“USER_TAB_COLUMNS”查询表结构2.用“a

Apache Ignite 与 Spring Boot 集成详细指南

《ApacheIgnite与SpringBoot集成详细指南》ApacheIgnite官方指南详解如何通过SpringBootStarter扩展实现自动配置,支持厚/轻客户端模式,简化Ign... 目录 一、背景:为什么需要这个集成? 二、两种集成方式(对应两种客户端模型) 三、方式一:自动配置 Thick

解密SQL查询语句执行的过程

《解密SQL查询语句执行的过程》文章讲解了SQL语句的执行流程,涵盖解析、优化、执行三个核心阶段,并介绍执行计划查看方法EXPLAIN,同时提出性能优化技巧如合理使用索引、避免SELECT*、JOIN... 目录1. SQL语句的基本结构2. SQL语句的执行过程3. SQL语句的执行计划4. 常见的性能优

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

Spring Bean初始化及@PostConstruc执行顺序示例详解

《SpringBean初始化及@PostConstruc执行顺序示例详解》本文给大家介绍SpringBean初始化及@PostConstruc执行顺序,本文通过实例代码给大家介绍的非常详细,对大家的... 目录1. Bean初始化执行顺序2. 成员变量初始化顺序2.1 普通Java类(非Spring环境)(

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

如何在Java Spring实现异步执行(详细篇)

《如何在JavaSpring实现异步执行(详细篇)》Spring框架通过@Async、Executor等实现异步执行,提升系统性能与响应速度,支持自定义线程池管理并发,本文给大家介绍如何在Sprin... 目录前言1. 使用 @Async 实现异步执行1.1 启用异步执行支持1.2 创建异步方法1.3 调用

Apache Ignite缓存基本操作实例详解

《ApacheIgnite缓存基本操作实例详解》文章介绍了ApacheIgnite中IgniteCache的基本操作,涵盖缓存获取、动态创建、销毁、原子及条件更新、异步执行,强调线程池注意事项,避免... 目录一、获取缓存实例(Getting an Instance of a Cache)示例代码:二、动态

Java中的xxl-job调度器线程池工作机制

《Java中的xxl-job调度器线程池工作机制》xxl-job通过快慢线程池分离短时与长时任务,动态降级超时任务至慢池,结合异步触发和资源隔离机制,提升高频调度的性能与稳定性,支撑高并发场景下的可靠... 目录⚙️ 一、调度器线程池的核心设计 二、线程池的工作流程 三、线程池配置参数与优化 四、总结:线程

Spring Boot Maven 插件如何构建可执行 JAR 的核心配置

《SpringBootMaven插件如何构建可执行JAR的核心配置》SpringBoot核心Maven插件,用于生成可执行JAR/WAR,内置服务器简化部署,支持热部署、多环境配置及依赖管理... 目录前言一、插件的核心功能与目标1.1 插件的定位1.2 插件的 Goals(目标)1.3 插件定位1.4 核