BOSS直聘上java岗位的薪资分析

2024-02-29 13:12

本文主要是介绍BOSS直聘上java岗位的薪资分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、数据介绍及预处理

1、数据介绍

2、数据预处理

二、数据分析

1、缺失值统计

2、岗位数量、薪资水平统计

3、企业维度岗位数量

4、top薪资岗位

三、划重点

少走10年弯路


        有点停不下来,又爬取了一下BOSS直聘上base北京的java岗位的相关数据,本文简单分析拿给大家做参考,整体来看还得是算法薪资更高一些、但是看top待遇java岗位也是相当高。

        在PC端上打开BOSS直聘网页搜索java,只会显示10页岗位(每页30条),所以我按照工作经验要求对应届生、 1年以内、 1-3年、 3-5年、 5-10年、 10年以上分别爬取数据,总共1594条(其中3-5年经验要求的搜出来只有4页-94条、不知道为什么)。

一、数据介绍及预处理

1、数据介绍

        数据包括职位名称、base地点、薪资水平、经验及学历要求、招聘公司、行业、融资阶段、员工规模等 文末获取数据集

图片

2、数据预处理

(1)数据筛选

        由于BOSS直聘上搜索java岗位的结果中,包含一些项目经理、算法等其他岗位,但是由于数量较少、同时java岗位技能要求比较综合,所以这部分不进行数据筛选

图片

        文章主题是对薪资进行分析,所以把面议的两条剔除

图片

(2)数据分割提取

        在job_area中包括市、行政区、乡镇三级地址,tag_list中包含经验要求、学历要求,company_tag_list中包含行业、融资阶段、员工规模,所以结合split方法、正则表达式分别进行数据提取。

图片

import re
def get_industry(string):try:result=re.findall('(.*?)[0-9].*[0-9].*',string)[0]l=['已上市','不需要融资','未融资','天使轮','A轮','B轮','C轮','D轮及以上']for s in l:result=result.replace(s,'')return resultexcept:return Nonedef get_scale(string):try:result=re.findall('([0-9].*[0-9].*)',string)[0]l=['已上市','不需要融资','未融资','天使轮','A轮','B轮','C轮','D轮及以上']for s in l:if s in result:result=result.split(s)[1]return resultexcept:return Nonedef dat_pred(data):df=data[~data.salary.str.contains('面议')].copy()df['district']=df.job_area.str.split('·').str[1]df['town']=df.job_area.str.split('·').str[2]df['experience']=df.tag_list.str.split('\\n').str[0]df['education']=df.tag_list.str.split('\\n').str[1]df['industry']=df.company_tag_list.apply(get_industry)
#     df['scale']=df.company_tag_list.apply(lambda x:re.findall('([0-9].*[0-9].*)',x)).str[0]df['scale']=df.company_tag_list.apply(get_scale)df['base_salary']=df.salary.str.split('-').str[0]df.base_salary=df.base_salary.astype(float)return dfdf_all_copy=df_all.pipe(dat_pred)
df_all_copy

(3)薪资数据处理

        考虑到薪资待遇下限更贴近实际,因此提取左边界作为base_salary用于分析,此外发现大部分salary单位是k、但是还有部分为元,所以进行标准化处理、统一为k;其中200-400/天的实习数据剔除掉

图片

二、数据分析

1、缺失值统计

        由于BOSS直聘上的数据格式规范,所以爬取的数据质量尚可,整体缺失率低

图片

2、岗位数量、薪资水平统计

        对地域、学历、经验、员工规模等进行分组统计岗位数量、薪资水平

(1)行政区分组统计

        不出所料,海淀和朝阳的java岗位数量远超其他地区,在海淀确实有很多互联网大厂的职场,在这个数据集中直接按行政区分组统计base_salary平均水平最高的也在朝阳、海淀

图片

图片

(2)经验要求分组统计

        从数据结果来看,相对于数据分析岗位而言、企业对应届生的java岗位招聘量也比较可观,类似于算法岗位;整体来看,java起薪比算法岗位要低一些,随着工作经验增加,java岗位的薪资待遇增长相对缓慢,看来还得靠多跳槽涨薪

图片

图片

(3)学历要求分组统计

        从数据结果来看,企业对学历还是有一定要求的,大多本科起步;随着学历提高,薪资差异虽然没有那么大、但也还是明显的单调关系

图片

图片

3、企业维度岗位数量

图片

4、top薪资岗位

        分别对不同经验要求的java岗位排序最高的top10薪资,可以看到虽然整体薪资待遇并不算很高、但是在不同经验要求下最高的一批薪资也还是很可观的、尤其是top岗位薪资是超乎想象的高、媲美算法岗位

图片

图片

图片

图片

三、划重点

少走10年弯路

        关注威信公众号 Python风控模型与数据分析,回复 BOSS直聘java 获取本篇数据及代码

        还有更多理论、代码分享等你来拿

这篇关于BOSS直聘上java岗位的薪资分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/758928

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

Java Lettuce 客户端入门到生产的实现步骤

《JavaLettuce客户端入门到生产的实现步骤》本文主要介绍了JavaLettuce客户端入门到生产的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录1 安装依赖MavenGradle2 最小化连接示例3 核心特性速览4 生产环境配置建议5 常见问题

Java使用Swing生成一个最大公约数计算器

《Java使用Swing生成一个最大公约数计算器》这篇文章主要为大家详细介绍了Java使用Swing生成一个最大公约数计算器的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下... 目录第一步:利用欧几里得算法计算最大公约数欧几里得算法的证明情形 1:b=0情形 2:b>0完成相关代码第二步:加

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

Java Map排序如何按照值按照键排序

《JavaMap排序如何按照值按照键排序》该文章主要介绍Java中三种Map(HashMap、LinkedHashMap、TreeMap)的默认排序行为及实现按键排序和按值排序的方法,每种方法结合实... 目录一、先理清 3 种 Map 的默认排序行为二、按「键」排序的实现方式1. 方式 1:用 TreeM

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node