以赛促教以赛促学:和鲸赋能暨大经管落实赛训一体,培养应用型数据人才!

本文主要是介绍以赛促教以赛促学:和鲸赋能暨大经管落实赛训一体,培养应用型数据人才!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

随着新一轮科技革命与产业变革的加速演进,数据思维、数据技术正深度浸入各行各业,在商科经管领域,数据分析可被广泛应用于市场营销、供应链管理、财务分析等工作,拥有相关学科背景的应用型数据科学人才备受重视。

然而,在奋力推进“大数据 + 商科”人才培养的过程中,各院校的跨学科课堂上却不断浮现种种卡脖子问题。从学生视角出发,由于缺乏数理、编程基础,面对数据科学“天生”便具有畏难甚至抵触情绪,难以快速上手加之行业了解不足、应用经验有限,理论考核过后,并不能真正以课堂所学解决实际问题

暨南大学经济管理实验教学中心成立于 2008 年,属于国家级实验教学示范中心,负责暨大经济、管理、旅游、创业、公管共五个学院中与实验、实训、实习相关的教学任务。为持续探索以大数据分析与人工智能为技术支撑的虚拟仿真实验教学新模式,中心携手和鲸开展《商业大数据分析》课程的教学工作,协同和鲸 ModelWhale 平台、和鲸社区资源、和鲸办赛服务全方位解决上述问题

作为财务管理、会计学、工商管理、市场营销等专业的必修学分,每一学年,ModelWhale 均为该课程近 400 位暨大师生提供开箱即用的分析实践平台与化繁为简的教学管理工具,同时社区以海量可供复现的数据、案例资源,一站式支持课堂内外的实训环节。

而为更充分践行“以赛促教、以赛促学、赛训一体”的先进理念、在延拓课堂形式的同时激励学生动手实践并产出完整的数据分析作品,和鲸协助暨大经济管理实验教学中心、数字商科实验室举办首届“暨南大学数字商业挑战赛”,要求选修《商业大数据分析》的学生全员参与,竞赛成绩与课程绩点直接相关。

和鲸团队为挑战赛设计赛题并援引社区资源准备赛题数据,同时运营赛事社群;ModelWhale 平台为参赛者提供统一的在线开发环境与充足的计算存储资源。挑战赛分设的四道赛题主题涵盖中美经济、工业生产、企业财务、零售快消,学生作为选手组队并择一参赛,针对所提交的完整数据分析报告及分析代码,挑战赛评审以当堂答辩的形式实现,由任课教师依据技术选型、数据丰度、展示效果等多个维度做出打分。

最终,首届“暨南大学数字商业挑战赛”圆满落地,大部分学生所完成的参赛作品质量远超预期:

聚焦中美经济的郭同学、邓同学、陈同学通过使用回归、聚类、交叉分析等多种数据处理技术,不仅从多个角度对中美经济现状进行了比较,同时分析成因并对未来趋势做出了合理预测;

而薛同学、苏同学、刘同学则关注我国高耗能产品进出口与工业产品产量,对两者关系进行了描述性、探索性分析,以数据为本,针对相关领域提出优化产业结构、提升生产效率、拓展国际市场、加强政策引导的策略建议……

对于四份最为优秀的参赛作品,和鲸协助选手将其赛果上线至和鲸社区,欢迎广大师生进入社区“优秀参赛作品专区”并使用 ModelWhale 进行作品的复现、学习。

赛后,和鲸面向课程师生进行了详尽的调研访谈以获取最真实的参赛评价。

中心副主任、课程任课教师汤胤教授指出,“教育,并不等同于教学,我们应为教育引入更多形式,激励学生将知识应用于实际。和鲸协助我们中心落实赛训一体的方针,过程中引入了平台工具和许多案例资源,不仅对教育本身有促进作用,也为我们教师大幅减负。”

多位同学对挑战赛的意义与实际体验给予高度认可。谈及参赛收获,焦同学认为本次挑战赛使自己对于数据分析的整体流程形成了相对完整的认识,真实数据与贴合实际的赛题也使自己的编程能力得到了很好的锻炼;唐同学则表示挑战赛不仅提供了优质的动手实践机会,组队参赛也使其再次领略到协同共赢的重要性,此外,寻找作品参考也让唐同学感知到了社区案例的高质量,ModelWhale 与和鲸社区均会成为她日后学习工作的好帮手

本次“暨南大学数字商业挑战赛”的圆满收官,不仅再次论证了“以赛促教、以赛促学、赛训一体”理念的先进性,更是暨大经济管理实验教学中心对于学生“创新、创意、创业”能力培养模式的又一次成功落地,而和鲸落实中心“虚拟仿真实验 + 校企合作实践” 的改革方针,协助其顺利构建并完善了应用型数据科学人才培养的体系与相关方法论

集成功能强大的数据科学协同平台 ModelWhale 与拥有海量数据案例资源的实践社区,辅以成熟的办赛经验与比赛模块,依据 OBE 成果导向的教育模式,目前,和鲸已成功构建出最完备的产品 + 资源 + 服务体系,并获得了从双一流到普通高校客户的广泛好评。

校内赛承办、应用型数据科学人才培养体系建设,任何相关需求,欢迎您点击【联系产品顾问(移动端跳转)】与和鲸展开交流(咨询备注“暨大校内赛”),或点击右侧链接免费【试用 ModelWhale 团队版】(获赠 CPU、GPU 算力)。

这篇关于以赛促教以赛促学:和鲸赋能暨大经管落实赛训一体,培养应用型数据人才!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/758338

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语