CVPR2024|AIGC(图像生成,视频生成等)相关论文汇总(附论文链接/开源代码/解析)【持续更新】

本文主要是介绍CVPR2024|AIGC(图像生成,视频生成等)相关论文汇总(附论文链接/开源代码/解析)【持续更新】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CVPR2024|AIGC相关论文汇总(如果觉得有帮助,欢迎点赞和收藏)

  • Awesome-CVPR2024-AIGC
  • 1.图像生成(Image Generation/Image Synthesis)
      • ECLIPSE: A Resource-Efficient Text-to-Image Prior for Image Generations
      • InstanceDiffusion: Instance-level Control for Image Generation
      • Instruct-Imagen: Image Generation with Multi-modal Instruction
      • MACE: Mass Concept Erasure in Diffusion Models
      • PAIR-Diffusion: Object-Level Image Editing with Structure-and-Appearance Paired Diffusion Models
      • Residual Denoising Diffusion Models
  • 2.图像编辑(Image Editing)
      • PIA: Your Personalized Image Animator via Plug-and-Play Modules in Text-to-Image Models
  • 3.视频生成(Video Generation/Image Synthesis)
      • Seeing and Hearing: Open-domain Visual-Audio Generation with Diffusion Latent Aligners
  • 4.视频编辑(Video Editing)
  • 5.3D生成(3D Generation/3D Synthesis)
      • EscherNet: A Generative Model for Scalable View Synthesis
  • 6.其他多任务(Others)
      • InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks
      • Q-Instruct: Improving Low-level Visual Abilities for Multi-modality Foundation Models
  • 参考
  • 相关整理

Awesome-CVPR2024-AIGC

A Collection of Papers and Codes for CVPR2024 AIGC

整理汇总下今年CVPR AIGC相关的论文和代码,具体如下。

欢迎star,fork和PR~
优先在Github更新:Awesome-CVPR2024-AIGC,欢迎star~
知乎:https://zhuanlan.zhihu.com/p/684325134

参考或转载请注明出处

CVPR2024官网:https://cvpr.thecvf.com/Conferences/2024

CVPR完整论文列表:

开会时间:2024年6月17日-6月21日

论文接收公布时间:

【Contents】

  • 1.图像生成(Image Generation/Image Synthesis)
  • 2.图像编辑(Image Editing)
  • 3.视频生成(Video Generation/Image Synthesis)
  • 4.视频编辑(Video Editing)
  • 5.3D生成(3D Generation/3D Synthesis)
  • 6.其他多任务(Others)

1.图像生成(Image Generation/Image Synthesis)

ECLIPSE: A Resource-Efficient Text-to-Image Prior for Image Generations

  • Paper: https://arxiv.org/abs/2312.04655
  • Code: https://github.com/eclipse-t2i/eclipse-inference

InstanceDiffusion: Instance-level Control for Image Generation

  • Paper: https://arxiv.org/abs/2402.03290
  • Code: https://github.com/frank-xwang/InstanceDiffusion

Instruct-Imagen: Image Generation with Multi-modal Instruction

  • Paper: https://arxiv.org/abs/2401.01952

MACE: Mass Concept Erasure in Diffusion Models

  • Paper:
  • Code: https://github.com/Shilin-LU/MACE

PAIR-Diffusion: Object-Level Image Editing with Structure-and-Appearance Paired Diffusion Models

  • Paper: https://arxiv.org/abs/2303.17546
  • Code: https://github.com/Picsart-AI-Research/PAIR-Diffusion

Residual Denoising Diffusion Models

  • Paper: https://arxiv.org/abs/2308.13712
  • Code: https://github.com/nachifur/RDDM

2.图像编辑(Image Editing)

PIA: Your Personalized Image Animator via Plug-and-Play Modules in Text-to-Image Models

  • Paper: https://arxiv.org/abs/2312.13964
  • Code: https://github.com/open-mmlab/PIA

3.视频生成(Video Generation/Image Synthesis)

Seeing and Hearing: Open-domain Visual-Audio Generation with Diffusion Latent Aligners

  • Paper: https://arxiv.org/abs/2308.13712
  • Code: https://github.com/yzxing87/Seeing-and-Hearing

4.视频编辑(Video Editing)

5.3D生成(3D Generation/3D Synthesis)

EscherNet: A Generative Model for Scalable View Synthesis

  • Paper: https://arxiv.org/abs/2402.03908
  • Code: https://github.com/kxhit/EscherNet

6.其他多任务(Others)

InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks

  • Paper: https://arxiv.org/abs/2312.14238
  • Code: https://github.com/OpenGVLab/InternVL

Q-Instruct: Improving Low-level Visual Abilities for Multi-modality Foundation Models

  • Paper: https://arxiv.org/abs/2311.06783
  • Code: https://github.com/Q-Future/Q-Instruct
    持续更新~

参考

CVPR 2024 论文和开源项目合集(Papers with Code)

相关整理

  • Awesome-AIGC-Research-Groups
  • Awesome-Low-Level-Vision-Research-Groups
  • Awesome-CVPR2024-CVPR2021-CVPR2020-Low-Level-Vision
  • Awesome-ECCV2020-Low-Level-Vision

这篇关于CVPR2024|AIGC(图像生成,视频生成等)相关论文汇总(附论文链接/开源代码/解析)【持续更新】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/758287

相关文章

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

CSS3中的字体及相关属性详解

《CSS3中的字体及相关属性详解》:本文主要介绍了CSS3中的字体及相关属性,详细内容请阅读本文,希望能对你有所帮助... 字体网页字体的三个来源:用户机器上安装的字体,放心使用。保存在第三方网站上的字体,例如Typekit和Google,可以link标签链接到你的页面上。保存在你自己Web服务器上的字

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Linux实现线程同步的多种方式汇总

《Linux实现线程同步的多种方式汇总》本文详细介绍了Linux下线程同步的多种方法,包括互斥锁、自旋锁、信号量以及它们的使用示例,通过这些同步机制,可以解决线程安全问题,防止资源竞争导致的错误,示例... 目录什么是线程同步?一、互斥锁(单人洗手间规则)适用场景:特点:二、条件变量(咖啡厅取餐系统)工作流

Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析

《Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析》InstantiationAwareBeanPostProcessor是Spring... 目录一、什么是InstantiationAwareBeanPostProcessor?二、核心方法解

深入解析 Java Future 类及代码示例

《深入解析JavaFuture类及代码示例》JavaFuture是java.util.concurrent包中用于表示异步计算结果的核心接口,下面给大家介绍JavaFuture类及实例代码,感兴... 目录一、Future 类概述二、核心工作机制代码示例执行流程2. 状态机模型3. 核心方法解析行为总结:三

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2

springboot项目中使用JOSN解析库的方法

《springboot项目中使用JOSN解析库的方法》JSON,全程是JavaScriptObjectNotation,是一种轻量级的数据交换格式,本文给大家介绍springboot项目中使用JOSN... 目录一、jsON解析简介二、Spring Boot项目中使用JSON解析1、pom.XML文件引入依

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷