随机采样一致性识别模型 Ransac

2024-02-29 02:36

本文主要是介绍随机采样一致性识别模型 Ransac,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

pclpy 随机采样一致性识别模型 Ransac

      • 一、算法原理
          • 1.背景
          • 2.运行说明
            • 1.显示带异常值的平面点云
            • 2.显示根据平面模型的随机采样一致性得到的平面点云
            • 3.显示带异常值的球形点云
            • 4.显示根据球形模型的随机采样一致性得到的球形点云
      • 二、代码
      • 三、结果
          • 1.显示带异常值的平面点云
          • 2.显示根据平面模型的随机采样一致性得到的平面点云
          • 3.显示带异常值的球形点云
          • 4.显示根据球形模型的随机采样一致性得到的球形点云
      • 四、相关数据

一、算法原理

1.背景

“RANdom SAmple Consensus”的缩写是RANSAC,它是一种迭代方法,用于从包含异常值的一组数据中估计数学模型的参数。该算法由 Fischler 和 Bolles 于 1981 年发布。 RANSAC 算法假设我们正在查看的所有数据都包含内部值和异常值。Inliers 可以通过具有一组特定参数值的模型来解释,而异常值在任何情况下都不适合该模型。另一个必要的假设是有一个程序可以从数据中最佳地估计所选模型的参数。

来自[维基百科]:

RANSAC 算法的输入是一组观测数据值、一个可以解释或拟合观测的参数化模型,以及一些置信参数。

RANSAC 通过迭代选择原始数据的随机子集来实现其目标。这些数据是假设的内点,然后按如下方式测试该假设:

  1. 模型被拟合到假设的内点,即模型的所有自由参数都是从内点重建的。
  2. 然后针对拟合模型测试所有其他数据,如果某个点与估计模型拟合良好,则也将其视为假设的内点。
  3. 如果足够多的点被归类为假设的内点,则估计模型相当好。
  4. 该模型是从所有假设的内点重新估计的,因为它只是从初始的假设内点集估计出来的。
  5. 最后,通过估计内点相对于模型的误差来评估模型。

这个过程重复固定的次数,每次都会产生一个模型,因为太少的点被归类为内点而被拒绝,或者是一个带有相应误差度量的精炼模型。在后一种情况下,如果其误差低于上次保存的模型,我们将保留精度最高的模型。

RANSAC 的一个优点是它能够对模型参数进行鲁棒估计,即,即使数据集中存在大量异常值,它也可以高度准确地估计参数。RANSAC 的一个缺点是计算这些参数所需的时间没有上限。当计算的迭代次数有限时,获得的解可能不是最佳的,甚至可能不是很好地拟合数据的解。通过这种方式,RANSAC 提供了一种权衡;通过计算更多的迭代次数,可以增加生成合理模型的概率。RANSAC 的另一个缺点是它需要设置特定于问题的阈值。

RANSAC 只能为特定数据集估计一个模型。对于存在两个(或更多)模型时的任何一种模型方法,RANSAC 可能无法找到任何一个。

在这里插入图片描述

上图(来自[维基百科])显示了 RANSAC 算法在二维数据集上的简单应用。我们左边的图像是包含内部值和异常值的数据集的可视化表示。右侧的图像以红色显示所有异常值,以蓝色显示内部值。蓝线是 RANSAC 所做工作的结果。在这种情况下,我们试图拟合数据的模型是一条线,看起来它非常适合我们的数据。

2.运行说明

以下调用结果均在terminal中输入,进入函数所在路径,本项目以 Ransac.py作为处理文件

1.显示带异常值的平面点云
python .\ranscac.py -p
2.显示根据平面模型的随机采样一致性得到的平面点云
python .\ranscac.py -pf
3.显示带异常值的球形点云
python .\ranscac.py -s
4.显示根据球形模型的随机采样一致性得到的球形点云
python .\ranscac.py -sf

二、代码

from pclpy import pcl
import numpy as np
import sysdef simpleVis(cloud):"""可视化点云"""viewer = pcl.visualization.PCLVisualizer()viewer.setBackgroundColor(0, 0, 0)viewer.addPointCloud(cloud, 'sample cloud')viewer.setPointCloudRenderingProperties(0, 3, 'sample cloud')viewer.initCameraParameters()return viewerdef printUsage(program):print('Usage:', program, ' [options]\n',"Options:\n","-------------------------------------------\n","-p          显示带异常值的平面点云\n","-s          显示带异常值的球形点云\n","-pf         显示根据平面模型的随机采样一致性得到的平面点云\n","-sf         显示根据球形模型的随机采样一致性得到的球形点云\n",)if __name__ == '__main__':# 生成点云数据cloud = pcl.PointCloud.PointXYZ()final = pcl.PointCloud.PointXYZ()size = 500point = pcl.point_types.PointXYZ()# 设置点云数据 (直接换成自己的点云即可)if len(sys.argv) == 1:   # 当输入错误是printUsage(sys.argv[0])exit()elif sys.argv[1] == '-p' or sys.argv[1] == '-pf':for i in range(size):point.x = np.random.rand() * 1024point.y = np.random.rand() * 1024if i % 5 == 0:point.z = np.random.rand() * 1024  # 1/5的外点else:point.z = -(point.x + point.y)  # 剩下的是平面z=-(x+y)上的点cloud.push_back(point)  # 将点云给与cloudelif sys.argv[1] == '-s' or sys.argv[1] == '-sf':   # 平面点云for i in range(size):point.x = np.random.rand() * 1024point.y = np.random.rand() * 1024if i % 5 == 0:point.z = np.random.rand() * 1024  # 1/5的外点elif i % 2 == 0:point.z = np.sqrt(np.fabs(1024 ** 2 - point.x ** 2 - point.y ** 2))  # 剩下的是圆x^2+y^2+z^2=1024^2上的点else:point.z = -np.sqrt(np.fabs(1024 ** 2 - point.x ** 2 - point.y ** 2))cloud.push_back(point)else:printUsage(sys.argv[0])exit()inliers = pcl.vectors.Int()# 创建随机采样一致性实例并计算估计模型model_s = pcl.sample_consensus.SampleConsensusModelSphere.PointXYZ(cloud)model_p = pcl.sample_consensus.SampleConsensusModelPlane.PointXYZ(cloud)if sys.argv[1] == '-pf':   # Ransac使用拟合ransac = pcl.sample_consensus.RandomSampleConsensus.PointXYZ(model_p)ransac.setDistanceThreshold(0.01)  # 设置距离阈值ransac.computeModel()ransac.getInliers(inliers)elif sys.argv[1] == '-sf':   # Ransac使用拟合ransac = pcl.sample_consensus.RandomSampleConsensus.PointXYZ(model_s)ransac.setDistanceThreshold(0.01)   # 设置距离阈值ransac.computeModel()ransac.getInliers(inliers)# 将所有通过模型计算的内点复制到另外一个点云 pclpy中未完成copyPointCloud函数extract = pcl.filters.ExtractIndices.PointXYZ()extract.setInputCloud(cloud)extract.setIndices(inliers)extract.setNegative(False)extract.filter(final)viewer = Noneif sys.argv[1] == '-p' or sys.argv[1] == '-s':  # 可视化显示带异常值点云viewer = simpleVis(cloud)elif sys.argv[1] == '-pf' or sys.argv[1] == '-sf':  # 根据平面模型的随机采样一致性viewer = simpleVis(final)while not viewer.wasStopped():viewer.spinOnce(10)

三、结果

1.显示带异常值的平面点云

在这里插入图片描述

2.显示根据平面模型的随机采样一致性得到的平面点云

在这里插入图片描述

3.显示带异常值的球形点云

在这里插入图片描述

4.显示根据球形模型的随机采样一致性得到的球形点云

在这里插入图片描述

四、相关数据

open3d 平面分割(Ransac算法 :open3d 平面分割(Ransac算法)-CSDN博客

这篇关于随机采样一致性识别模型 Ransac的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/757325

相关文章

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

Python验证码识别方式(使用pytesseract库)

《Python验证码识别方式(使用pytesseract库)》:本文主要介绍Python验证码识别方式(使用pytesseract库),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1、安装Tesseract-OCR2、在python中使用3、本地图片识别4、结合playwrigh

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Redis中的数据一致性问题以及解决方案

《Redis中的数据一致性问题以及解决方案》:本文主要介绍Redis中的数据一致性问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Redis 数据一致性问题的产生1. 单节点环境的一致性问题2. 网络分区和宕机3. 并发写入导致的脏数据4. 持

使用Python和PaddleOCR实现图文识别的代码和步骤

《使用Python和PaddleOCR实现图文识别的代码和步骤》在当今数字化时代,图文识别技术的应用越来越广泛,如文档数字化、信息提取等,PaddleOCR是百度开源的一款强大的OCR工具包,它集成了... 目录一、引言二、环境准备2.1 安装 python2.2 安装 PaddlePaddle2.3 安装

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI