2024年新提出的算法|鹦鹉优化器(Parrot optimizer):算法及其在医疗问题中的应用

2024-02-28 13:36

本文主要是介绍2024年新提出的算法|鹦鹉优化器(Parrot optimizer):算法及其在医疗问题中的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本期介绍一种基于训练后鹦鹉关键行为的高效优化方法——鹦鹉优化器(Parrot Optimizer, PO)。该成果于2024年2月发表在中科院2区top SCI期刊Computers in Biology and Medicine(IF=7.7)
在这里插入图片描述

1、简介

鹦鹉优化器(PO)是一种受训练有素的Pyrrhura Molinae鹦鹉观察到的关键行为启发的高效优化方法。该研究以定性分析和综合实验为特色,展示了鹦鹉优化器在处理各种优化问题时的独特特征。性能评估包括在35个函数上对所提出的PO进行基准测试,包括来自IEEE CEC 2022测试集的经典案例和问题,并将其与八种流行算法进行比较。结果生动地突出了PO在其探索性和开发性特征方面的竞争优势。此外,参数敏感性实验探索了所提出的PO在不同配置下的适应性。开发的PO在应用于工程设计问题时展示了有效性和优越性。为了进一步将评估扩展到现实世界的应用,我们将PO应用于疾病诊断和医学图像分割问题,这些问题在医学领域具有高度相关性和重要性。
在这里插入图片描述

2、数学建模

2.1 种群初始化(随机)

X i 0 = l b + r a n d ( 0 , 1 ) ⋅ ( u b − l b ) X_{i}^{0}=l b+r a n d\left(0,1\right)\cdot\left(u b-l b\right) Xi0=lb+rand(0,1)(ublb)

2.2 觅食行为

在PO的觅食行为中,它们主要通过观察食物的位置或考虑主人的位置来估计食物的大致位置,然后向各自的位置飞行。位置运动遵循以下方程:
X i t + 1 = ( X i t − X b e s t ) ⋅ L e v y ( d i m ) + r a n d ( 0 , 1 ) ⋅ ( 1 − t M a x i n v ) u M a x i n v ⋅ X m e a n t X_{i}^{t+1}=\left(X_{i}^{t}-X_{b e s t}\right)\cdot L e v y\left(d i m\right)+r a n d\left(0,1\right)\cdot\left(1-\frac{t}{M a x_{i n v}}\right)^{\frac{u}{M a x_{i n v}}}\cdot X_{m e a n}^{t} Xit+1=(XitXbest)Levy(dim)+rand(0,1)(1Maxinvt)MaxinvuXmeant

2.3 停留行为

Pyrrhura Molinae是一种高度社会化的生物,它的停留行为主要包括突然逃到主人身体的任何部位,在那里它保持静止一段时间。这个过程如图所示。这个过程可以表示为:
X i t + 1 = X i t + X b e s t ⋅ L e v y ( d i m ) + r a n d ( 0 , 1 ) ⋅ o n e s ( 1 , d i m ) X_{i}^{t+1}=X_{i}^{t}+X_{b e s t}\cdot L e v y(d i m)+r a n d(0,1)\cdot o n e s\left(1,d i m\right) Xit+1=Xit+XbestLevy(dim)+rand(0,1)ones(1,dim)
o n e s ( 1 , d i m ) ones(1,dim) ones(1,dim)表示随机停在宿主身体某一部位的过程。
在这里插入图片描述

2.4 沟通行为

Pyrrhura Molinae鹦鹉是天生的群居动物,其特点是在群体内进行密切的交流。这种交流行为包括飞向羊群和不飞向羊群进行交流。在PO中,假设这两种行为发生的概率相等,并使用当前群体的平均位置来表示群体的中心。这个过程如图所示。这个过程可以表示为:
X i t + 1 = { 0.2 ⋅ r a n d ( 0 , 1 ) ⋅ ( 1 − t M a x i e r ) ⋅ ( X i t − X m e a n t ) , P ≤ 0.5 0.2 ⋅ r a n d ( 0 , 1 ) ⋅ e x p ( − t r a n d ( 0 , 1 ) ⋅ M a x i e r ) , P > 0.5 X_{i}^{t+1}=\left\{\begin{array}{c}{{0.2\cdot r a n d\left(0,1\right)\cdot\left(1-\frac t{M a x_{i e r}}\right)\cdot\left(X_{i}^{t}-X_{m e a n}^{t}\right),P\leq0.5}}\\ {{0.2\cdot r a n d\left(0,1\right)\cdot ex p\left(-\frac t{r a n d(0,1)\cdot M a x_{i e r}}\right),P\gt 0.5}}\end{array}\right. Xit+1= 0.2rand(0,1)(1Maxiert)(XitXmeant),P0.50.2rand(0,1)exp(rand(0,1)Maxiert),P>0.5

在这里插入图片描述

2.5 害怕陌生人的行为

一般来说,鸟类对陌生人表现出天生的恐惧,Pyrrhura Molinae鹦鹉也不例外。它们与不熟悉的个体保持距离,并与主人一起寻求安全环境的行为如图5所示,如下所述:
X i t + 1 = X i t + r a n d ( 0 , 1 ) ⋅ c o s ( 0.5 π ⋅ t M a x i e r ) ⋅ ( X b e s t − X i t ) − c o s ( r a n d ( 0 , 1 ) ⋅ π ) ⋅ ( t M a x i e r ) 2 M a x i e r ⋅ ( X i t − X b e s t ) X_{i}^{t+1}\,=\,X_{i}^{t}\,+\,r a n d\,(0,1)\cdot c o s\,\left(0.5\pi\cdot{\frac{t}{M a x_{i e r}}}\right)\,\cdot\,\left(X_{b e s t}\,-\,X_{i}^{t}\right)-\,c o s\left(r a n d\left(0,1\right)\cdot\pi\right)\cdot\left(\frac{t}{M a x_{i e r}}\right)^{\frac{2}{M a x_{i e r}}}\,\cdot\left(X_{i}^{t}-X_{b e s t}\right) Xit+1=Xit+rand(0,1)cos(0.5πMaxiert)(XbestXit)cos(rand(0,1)π)(Maxiert)Maxier2(XitXbest)

3.Matlab源代码下载

(1)2024年新提出的算法|鹦鹉优化器(PO)跑CEC2005数据集
(2)2024年新提出的算法|鹦鹉优化器(PO)跑CEC2017数据集
(2)2024年新提出的算法|鹦鹉优化器(PO)跑CEC2022数据集

Junbo Lian, Guohua Hui, Ling Ma, Ting Zhu, Xincan Wu, Ali Asghar Heidari, Yi Chen, Huiling Chen,Parrot optimizer: Algorithm and applications to medical problems,Computers in Biology and Medicine,2024, https://doi.org/10.1016/j.compbiomed.2024.108064.

这篇关于2024年新提出的算法|鹦鹉优化器(Parrot optimizer):算法及其在医疗问题中的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/755650

相关文章

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos