2024年新提出的算法|鹦鹉优化器(Parrot optimizer):算法及其在医疗问题中的应用

2024-02-28 13:36

本文主要是介绍2024年新提出的算法|鹦鹉优化器(Parrot optimizer):算法及其在医疗问题中的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本期介绍一种基于训练后鹦鹉关键行为的高效优化方法——鹦鹉优化器(Parrot Optimizer, PO)。该成果于2024年2月发表在中科院2区top SCI期刊Computers in Biology and Medicine(IF=7.7)
在这里插入图片描述

1、简介

鹦鹉优化器(PO)是一种受训练有素的Pyrrhura Molinae鹦鹉观察到的关键行为启发的高效优化方法。该研究以定性分析和综合实验为特色,展示了鹦鹉优化器在处理各种优化问题时的独特特征。性能评估包括在35个函数上对所提出的PO进行基准测试,包括来自IEEE CEC 2022测试集的经典案例和问题,并将其与八种流行算法进行比较。结果生动地突出了PO在其探索性和开发性特征方面的竞争优势。此外,参数敏感性实验探索了所提出的PO在不同配置下的适应性。开发的PO在应用于工程设计问题时展示了有效性和优越性。为了进一步将评估扩展到现实世界的应用,我们将PO应用于疾病诊断和医学图像分割问题,这些问题在医学领域具有高度相关性和重要性。
在这里插入图片描述

2、数学建模

2.1 种群初始化(随机)

X i 0 = l b + r a n d ( 0 , 1 ) ⋅ ( u b − l b ) X_{i}^{0}=l b+r a n d\left(0,1\right)\cdot\left(u b-l b\right) Xi0=lb+rand(0,1)(ublb)

2.2 觅食行为

在PO的觅食行为中,它们主要通过观察食物的位置或考虑主人的位置来估计食物的大致位置,然后向各自的位置飞行。位置运动遵循以下方程:
X i t + 1 = ( X i t − X b e s t ) ⋅ L e v y ( d i m ) + r a n d ( 0 , 1 ) ⋅ ( 1 − t M a x i n v ) u M a x i n v ⋅ X m e a n t X_{i}^{t+1}=\left(X_{i}^{t}-X_{b e s t}\right)\cdot L e v y\left(d i m\right)+r a n d\left(0,1\right)\cdot\left(1-\frac{t}{M a x_{i n v}}\right)^{\frac{u}{M a x_{i n v}}}\cdot X_{m e a n}^{t} Xit+1=(XitXbest)Levy(dim)+rand(0,1)(1Maxinvt)MaxinvuXmeant

2.3 停留行为

Pyrrhura Molinae是一种高度社会化的生物,它的停留行为主要包括突然逃到主人身体的任何部位,在那里它保持静止一段时间。这个过程如图所示。这个过程可以表示为:
X i t + 1 = X i t + X b e s t ⋅ L e v y ( d i m ) + r a n d ( 0 , 1 ) ⋅ o n e s ( 1 , d i m ) X_{i}^{t+1}=X_{i}^{t}+X_{b e s t}\cdot L e v y(d i m)+r a n d(0,1)\cdot o n e s\left(1,d i m\right) Xit+1=Xit+XbestLevy(dim)+rand(0,1)ones(1,dim)
o n e s ( 1 , d i m ) ones(1,dim) ones(1,dim)表示随机停在宿主身体某一部位的过程。
在这里插入图片描述

2.4 沟通行为

Pyrrhura Molinae鹦鹉是天生的群居动物,其特点是在群体内进行密切的交流。这种交流行为包括飞向羊群和不飞向羊群进行交流。在PO中,假设这两种行为发生的概率相等,并使用当前群体的平均位置来表示群体的中心。这个过程如图所示。这个过程可以表示为:
X i t + 1 = { 0.2 ⋅ r a n d ( 0 , 1 ) ⋅ ( 1 − t M a x i e r ) ⋅ ( X i t − X m e a n t ) , P ≤ 0.5 0.2 ⋅ r a n d ( 0 , 1 ) ⋅ e x p ( − t r a n d ( 0 , 1 ) ⋅ M a x i e r ) , P > 0.5 X_{i}^{t+1}=\left\{\begin{array}{c}{{0.2\cdot r a n d\left(0,1\right)\cdot\left(1-\frac t{M a x_{i e r}}\right)\cdot\left(X_{i}^{t}-X_{m e a n}^{t}\right),P\leq0.5}}\\ {{0.2\cdot r a n d\left(0,1\right)\cdot ex p\left(-\frac t{r a n d(0,1)\cdot M a x_{i e r}}\right),P\gt 0.5}}\end{array}\right. Xit+1= 0.2rand(0,1)(1Maxiert)(XitXmeant),P0.50.2rand(0,1)exp(rand(0,1)Maxiert),P>0.5

在这里插入图片描述

2.5 害怕陌生人的行为

一般来说,鸟类对陌生人表现出天生的恐惧,Pyrrhura Molinae鹦鹉也不例外。它们与不熟悉的个体保持距离,并与主人一起寻求安全环境的行为如图5所示,如下所述:
X i t + 1 = X i t + r a n d ( 0 , 1 ) ⋅ c o s ( 0.5 π ⋅ t M a x i e r ) ⋅ ( X b e s t − X i t ) − c o s ( r a n d ( 0 , 1 ) ⋅ π ) ⋅ ( t M a x i e r ) 2 M a x i e r ⋅ ( X i t − X b e s t ) X_{i}^{t+1}\,=\,X_{i}^{t}\,+\,r a n d\,(0,1)\cdot c o s\,\left(0.5\pi\cdot{\frac{t}{M a x_{i e r}}}\right)\,\cdot\,\left(X_{b e s t}\,-\,X_{i}^{t}\right)-\,c o s\left(r a n d\left(0,1\right)\cdot\pi\right)\cdot\left(\frac{t}{M a x_{i e r}}\right)^{\frac{2}{M a x_{i e r}}}\,\cdot\left(X_{i}^{t}-X_{b e s t}\right) Xit+1=Xit+rand(0,1)cos(0.5πMaxiert)(XbestXit)cos(rand(0,1)π)(Maxiert)Maxier2(XitXbest)

3.Matlab源代码下载

(1)2024年新提出的算法|鹦鹉优化器(PO)跑CEC2005数据集
(2)2024年新提出的算法|鹦鹉优化器(PO)跑CEC2017数据集
(2)2024年新提出的算法|鹦鹉优化器(PO)跑CEC2022数据集

Junbo Lian, Guohua Hui, Ling Ma, Ting Zhu, Xincan Wu, Ali Asghar Heidari, Yi Chen, Huiling Chen,Parrot optimizer: Algorithm and applications to medical problems,Computers in Biology and Medicine,2024, https://doi.org/10.1016/j.compbiomed.2024.108064.

这篇关于2024年新提出的算法|鹦鹉优化器(Parrot optimizer):算法及其在医疗问题中的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/755650

相关文章

解决hive启动时java.net.ConnectException:拒绝连接的问题

《解决hive启动时java.net.ConnectException:拒绝连接的问题》Hadoop集群连接被拒,需检查集群是否启动、关闭防火墙/SELinux、确认安全模式退出,若问题仍存,查看日志... 目录错误发生原因解决方式1.关闭防火墙2.关闭selinux3.启动集群4.检查集群是否正常启动5.

idea Maven Springboot多模块项目打包时90%的问题及解决方案

《ideaMavenSpringboot多模块项目打包时90%的问题及解决方案》:本文主要介绍ideaMavenSpringboot多模块项目打包时90%的问题及解决方案,具有很好的参考价值,... 目录1. 前言2. 问题3. 解决办法4. jar 包冲突总结1. 前言之所以写这篇文章是因为在使用Mav

Java Stream 的 Collectors.toMap高级应用与最佳实践

《JavaStream的Collectors.toMap高级应用与最佳实践》文章讲解JavaStreamAPI中Collectors.toMap的使用,涵盖基础语法、键冲突处理、自定义Map... 目录一、基础用法回顾二、处理键冲突三、自定义 Map 实现类型四、处理 null 值五、复杂值类型转换六、处理

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream