2024年新提出的算法|鹦鹉优化器(Parrot optimizer):算法及其在医疗问题中的应用

2024-02-28 13:36

本文主要是介绍2024年新提出的算法|鹦鹉优化器(Parrot optimizer):算法及其在医疗问题中的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本期介绍一种基于训练后鹦鹉关键行为的高效优化方法——鹦鹉优化器(Parrot Optimizer, PO)。该成果于2024年2月发表在中科院2区top SCI期刊Computers in Biology and Medicine(IF=7.7)
在这里插入图片描述

1、简介

鹦鹉优化器(PO)是一种受训练有素的Pyrrhura Molinae鹦鹉观察到的关键行为启发的高效优化方法。该研究以定性分析和综合实验为特色,展示了鹦鹉优化器在处理各种优化问题时的独特特征。性能评估包括在35个函数上对所提出的PO进行基准测试,包括来自IEEE CEC 2022测试集的经典案例和问题,并将其与八种流行算法进行比较。结果生动地突出了PO在其探索性和开发性特征方面的竞争优势。此外,参数敏感性实验探索了所提出的PO在不同配置下的适应性。开发的PO在应用于工程设计问题时展示了有效性和优越性。为了进一步将评估扩展到现实世界的应用,我们将PO应用于疾病诊断和医学图像分割问题,这些问题在医学领域具有高度相关性和重要性。
在这里插入图片描述

2、数学建模

2.1 种群初始化(随机)

X i 0 = l b + r a n d ( 0 , 1 ) ⋅ ( u b − l b ) X_{i}^{0}=l b+r a n d\left(0,1\right)\cdot\left(u b-l b\right) Xi0=lb+rand(0,1)(ublb)

2.2 觅食行为

在PO的觅食行为中,它们主要通过观察食物的位置或考虑主人的位置来估计食物的大致位置,然后向各自的位置飞行。位置运动遵循以下方程:
X i t + 1 = ( X i t − X b e s t ) ⋅ L e v y ( d i m ) + r a n d ( 0 , 1 ) ⋅ ( 1 − t M a x i n v ) u M a x i n v ⋅ X m e a n t X_{i}^{t+1}=\left(X_{i}^{t}-X_{b e s t}\right)\cdot L e v y\left(d i m\right)+r a n d\left(0,1\right)\cdot\left(1-\frac{t}{M a x_{i n v}}\right)^{\frac{u}{M a x_{i n v}}}\cdot X_{m e a n}^{t} Xit+1=(XitXbest)Levy(dim)+rand(0,1)(1Maxinvt)MaxinvuXmeant

2.3 停留行为

Pyrrhura Molinae是一种高度社会化的生物,它的停留行为主要包括突然逃到主人身体的任何部位,在那里它保持静止一段时间。这个过程如图所示。这个过程可以表示为:
X i t + 1 = X i t + X b e s t ⋅ L e v y ( d i m ) + r a n d ( 0 , 1 ) ⋅ o n e s ( 1 , d i m ) X_{i}^{t+1}=X_{i}^{t}+X_{b e s t}\cdot L e v y(d i m)+r a n d(0,1)\cdot o n e s\left(1,d i m\right) Xit+1=Xit+XbestLevy(dim)+rand(0,1)ones(1,dim)
o n e s ( 1 , d i m ) ones(1,dim) ones(1,dim)表示随机停在宿主身体某一部位的过程。
在这里插入图片描述

2.4 沟通行为

Pyrrhura Molinae鹦鹉是天生的群居动物,其特点是在群体内进行密切的交流。这种交流行为包括飞向羊群和不飞向羊群进行交流。在PO中,假设这两种行为发生的概率相等,并使用当前群体的平均位置来表示群体的中心。这个过程如图所示。这个过程可以表示为:
X i t + 1 = { 0.2 ⋅ r a n d ( 0 , 1 ) ⋅ ( 1 − t M a x i e r ) ⋅ ( X i t − X m e a n t ) , P ≤ 0.5 0.2 ⋅ r a n d ( 0 , 1 ) ⋅ e x p ( − t r a n d ( 0 , 1 ) ⋅ M a x i e r ) , P > 0.5 X_{i}^{t+1}=\left\{\begin{array}{c}{{0.2\cdot r a n d\left(0,1\right)\cdot\left(1-\frac t{M a x_{i e r}}\right)\cdot\left(X_{i}^{t}-X_{m e a n}^{t}\right),P\leq0.5}}\\ {{0.2\cdot r a n d\left(0,1\right)\cdot ex p\left(-\frac t{r a n d(0,1)\cdot M a x_{i e r}}\right),P\gt 0.5}}\end{array}\right. Xit+1= 0.2rand(0,1)(1Maxiert)(XitXmeant),P0.50.2rand(0,1)exp(rand(0,1)Maxiert),P>0.5

在这里插入图片描述

2.5 害怕陌生人的行为

一般来说,鸟类对陌生人表现出天生的恐惧,Pyrrhura Molinae鹦鹉也不例外。它们与不熟悉的个体保持距离,并与主人一起寻求安全环境的行为如图5所示,如下所述:
X i t + 1 = X i t + r a n d ( 0 , 1 ) ⋅ c o s ( 0.5 π ⋅ t M a x i e r ) ⋅ ( X b e s t − X i t ) − c o s ( r a n d ( 0 , 1 ) ⋅ π ) ⋅ ( t M a x i e r ) 2 M a x i e r ⋅ ( X i t − X b e s t ) X_{i}^{t+1}\,=\,X_{i}^{t}\,+\,r a n d\,(0,1)\cdot c o s\,\left(0.5\pi\cdot{\frac{t}{M a x_{i e r}}}\right)\,\cdot\,\left(X_{b e s t}\,-\,X_{i}^{t}\right)-\,c o s\left(r a n d\left(0,1\right)\cdot\pi\right)\cdot\left(\frac{t}{M a x_{i e r}}\right)^{\frac{2}{M a x_{i e r}}}\,\cdot\left(X_{i}^{t}-X_{b e s t}\right) Xit+1=Xit+rand(0,1)cos(0.5πMaxiert)(XbestXit)cos(rand(0,1)π)(Maxiert)Maxier2(XitXbest)

3.Matlab源代码下载

(1)2024年新提出的算法|鹦鹉优化器(PO)跑CEC2005数据集
(2)2024年新提出的算法|鹦鹉优化器(PO)跑CEC2017数据集
(2)2024年新提出的算法|鹦鹉优化器(PO)跑CEC2022数据集

Junbo Lian, Guohua Hui, Ling Ma, Ting Zhu, Xincan Wu, Ali Asghar Heidari, Yi Chen, Huiling Chen,Parrot optimizer: Algorithm and applications to medical problems,Computers in Biology and Medicine,2024, https://doi.org/10.1016/j.compbiomed.2024.108064.

这篇关于2024年新提出的算法|鹦鹉优化器(Parrot optimizer):算法及其在医疗问题中的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/755650

相关文章

解决IDEA报错:编码GBK的不可映射字符问题

《解决IDEA报错:编码GBK的不可映射字符问题》:本文主要介绍解决IDEA报错:编码GBK的不可映射字符问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录IDEA报错:编码GBK的不可映射字符终端软件问题描述原因分析解决方案方法1:将命令改为方法2:右下jav

MyBatis模糊查询报错:ParserException: not supported.pos 问题解决

《MyBatis模糊查询报错:ParserException:notsupported.pos问题解决》本文主要介绍了MyBatis模糊查询报错:ParserException:notsuppo... 目录问题描述问题根源错误SQL解析逻辑深层原因分析三种解决方案方案一:使用CONCAT函数(推荐)方案二:

Redis 热 key 和大 key 问题小结

《Redis热key和大key问题小结》:本文主要介绍Redis热key和大key问题小结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、什么是 Redis 热 key?热 key(Hot Key)定义: 热 key 常见表现:热 key 的风险:二、

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Spring Boot中JSON数值溢出问题从报错到优雅解决办法

《SpringBoot中JSON数值溢出问题从报错到优雅解决办法》:本文主要介绍SpringBoot中JSON数值溢出问题从报错到优雅的解决办法,通过修改字段类型为Long、添加全局异常处理和... 目录一、问题背景:为什么我的接口突然报错了?二、为什么会发生这个错误?1. Java 数据类型的“容量”限制

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

关于MongoDB图片URL存储异常问题以及解决

《关于MongoDB图片URL存储异常问题以及解决》:本文主要介绍关于MongoDB图片URL存储异常问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录MongoDB图片URL存储异常问题项目场景问题描述原因分析解决方案预防措施js总结MongoDB图

SpringBoot项目中报错The field screenShot exceeds its maximum permitted size of 1048576 bytes.的问题及解决

《SpringBoot项目中报错ThefieldscreenShotexceedsitsmaximumpermittedsizeof1048576bytes.的问题及解决》这篇文章... 目录项目场景问题描述原因分析解决方案总结项目场景javascript提示:项目相关背景:项目场景:基于Spring

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基