大数据-SparkStreaming(九)

2024-02-28 07:59
文章标签 数据 sparkstreaming

本文主要是介绍大数据-SparkStreaming(九),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

                         大数据-SparkStreaming(九)

SparkStreaming调优

  • 调整BlockReceiver的数量

案例演示:

val kafkaStream = {  val sparkStreamingConsumerGroup = "spark-streaming-consumer-group"  val kafkaParams = Map(  "zookeeper.connect" -> "node01:2181,node02:2181,node03:2181",  "group.id" -> "spark-streaming-test")  val inputTopic = "test"  val numPartitionsOfInputTopic = 3  val streams = (1 to numPartitionsOfInputTopic) map  {x =>  KafkaUtils.createStream(ssc, kafkaParams, Map(inputTopic -> 1),      StorageLevel.MEMORY_ONLY_SER).map(_._2)  }  val unifiedStream = ssc.union(streams) 
  •  调整Block的数量

batchInterval : 触发批处理的时间间隔
blockInterval :将接收到的数据生成Block的时间间隔,spark.streaming.blockInterval(默认是200ms),那么,BlockRDD的分区数 = batchInterval / blockInterval,即一个Block就是RDD的一个分区,就是一个task
比如,batchInterval是2秒,而blockInterval是200ms,那么task数为10,如果task的数量太少,比一个executor的core数还少的话,那么可以减少blockInterval,blockInterval最好不要小于50ms,太小的话导致task数太多,那么launch task的时间久多了。

  • 调整Receiver的接受速率

pps:permits per second 每秒允许接受的数据量(QPS -> queries per second)
Spark Streaming默认的PPS是没有限制的,可以通过参数spark.streaming.receiver.maxRate来控制,默认是Long.Maxvalue

  • 调整数据处理的并行度

BlockRDD的分区数

a. 通过Receiver接受数据的特点决定

b. 也可以自己通过repartition设置

ShuffleRDD的分区数

a. 默认的分区数为spark.default.parallelism(core的大小)

b. 通过我们自己设置决定

val wordCounts = words.map(x => (x, 1)).reduceByKey((a: Int, b: Int) => a + b, new HashPartitioner(10))
  • 数据的序列化

SparkStreaming两种需要序列化的数据: a. 输入的数据:默认是以StorageLevel.MEMORY_AND_DISK_SER_2的形式存储在executor上的内存中 b. 缓存的数据:默认是以StorageLevel.MEMORY_ONLY_SER的形式存储的内存中 使用Kryo序列化机制,比Java序列化机制性能好

val conf = new SparkConf().setMaster(...).setAppName(...)
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
conf.registerKryoClasses(Array(classOf[MyClass1], classOf[MyClass2]))
val sc = new SparkContext(conf)
  • 内存调优

需要内存大小

和transformation的类型有关,如果使用的是updateStateByKey,Window这样的算子,那么内存就要设置得偏大。

数据存储级别

如果把接收到的数据设置的存储级别是MEMORY_DISK这种级别,也就是说如果内存不够可以把数据存储到磁盘上,其实性能还是不好的,性能最好的就是所有的数据都在内存里面,所以如果在资源允许的情况下,把内存调大一点,让所有的数据都存在内存里面。

  • Output Operations性能

保存结果到外部的存储介质中,比如mysql/hbase数据库,使用高性能的算子操作实现。

  • Backpressure(压力反馈)--->背压机制

 

Feedback Loop : 动态使得Streaming app从unstable状态回到stable状态。

从Spark1.5版本开始:spark.streaming.backpressure.enabled = true

  • Elastic Scaling(资源动态分配)

动态分配资源:

批处理动态的决定这个application中需要多少个Executors:

  1. 当一个Executor空闲的时候,将这个Executor杀掉

  2. 当task太多的时候,动态的启动Executors

Streaming分配Executor的原则是比对 process time / batchInterval 的比率。

如果延迟了,那么就自动增加资源。

 

 

从Spark2.0有这个功能,开启资源动态分配: spark.streaming.dynamicAllocation.enabled = true

 

这篇关于大数据-SparkStreaming(九)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/754881

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元