自然语言处理: 第十三章Xinference部署

2024-02-28 07:52

本文主要是介绍自然语言处理: 第十三章Xinference部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

项目地址: Xorbitsai/inference

理论基础

正如同Xorbits Inference(Xinference)官网介绍是一个性能强大且功能全面的分布式推理框架。可用于大语言模型(LLM),语音识别模型,多模态模型等各种模型的推理。通过 Xorbits Inference,你可以轻松地一键部署你自己的模型或内置的前沿开源模型。无论你是研究者,开发者,或是数据科学家,都可以通过 Xorbits Inference 与最前沿的 AI 模型,发掘更多可能。

介绍这个项目主要是为了后面在dify能够快速部署接入API。

在这里插入图片描述

下图是xinference的与其他开源集成大模型框架的对比,可以看到xinference相比于其他开源框架还是有很多有点的。而且本人使用下来发现确实上手简单,

在这里插入图片描述



本地搭建

本人使用的是autodl上,所以相对应的无论是在linxu还是windows系统都差不多

1 安装

安装的时候由于xinference直接安装的时候会装pytorch的cpu版本,所以装完之后还需要重新装一下GPU版本的torch

# 新建环境
conda create -n xinference python=3.10# 激活环境
conda activate xinference# 安装xinference所有包
pip3 install "xinference[all]"# 安装GOU版的torch
pip3 install torch==2.0.0+cu118 torchvision==0.15.1+cu118 -f https://download.pytorch.org/whl/torch_stable.html --trusted-host=pypi.python.org --trusted-host=pypi.org --trusted-host=files.pythonhosted.org


2. 启动xinference 服务

-host 如果不指定0.0.0.0 就只能本地访问了, -port 指定接口,默认是9997, 我是在autodl上使用的所以必须是6006

$ xinference-local --host 0.0.0.0 --port 6006

输入后,正常启动的话输出应该如下

2024-02-27 17:17:29,313 xinference.core.supervisor 1504 INFO     Xinference supervisor 0.0.0.0:14154 started
2024-02-27 17:17:29,433 xinference.core.worker 1504 INFO     Starting metrics export server at 0.0.0.0:None
2024-02-27 17:17:29,437 xinference.core.worker 1504 INFO     Checking metrics export server...
2024-02-27 17:17:33,903 xinference.core.worker 1504 INFO     Metrics server is started at: http://0.0.0.0:34531
2024-02-27 17:17:33,905 xinference.core.worker 1504 INFO     Xinference worker 0.0.0.0:14154 started
2024-02-27 17:17:33,906 xinference.core.worker 1504 INFO     Purge cache directory: /root/.xinference/cache
2024-02-27 17:17:33,910 xinference.core.utils 1504 INFO     Remove empty directory: /root/.xinference/cache/bge-reranker-large
2024-02-27 17:17:42,827 xinference.api.restful_api 1496 INFO     Starting Xinference at endpoint: http://0.0.0.0:6006


3. 启动大模型

xinference 提供了两种部署模型的方式

  1. 从http://127.0.0.1:<端口>启动交互,在web交互界面中启动服务
  2. 命令端启动 , 至于选择哪种方式看个人。这里由于交互界面比较简单,主要还是介绍下终端的方式

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

上面如果修改了端口,可以根据下面对应的修改端口

# https://hf-mirror.com/ 
export HF_ENDPOINT=https://hf-mirror.com
export XINFERENCE_MODEL_SRC=modelscope
# log缓存地址
export XINFERENCE_HOME=/root/autodl-tmp
# 端口修改了重新设置环境变量
export XINFERENCE_ENDPOINT=http://127.0.0.1:6006

修改完了就可以对应的启动相对应的服务,下面是分别启动chat / embedding / rerank 三种模型的cmd命令, 其他模型命令可以参考xinference主页。 启动完了,会返回对应模型的UID(后期在Dify部署会用到)

# 部署chatglm3
xinference launch --model-name chatglm3 --size-in-billions 6 --model-format pytorch --quantization 8-bit
# 部署 bge-large-zh embedding
xinference launch --model-name bge-large-zh --model-type embedding
# 部署 bge-reranker-large rerank
xinference launch --model-name bge-reranker-large --model-type rerank

如果想测试模型是否已经部署到本地,以rerank模型为例可以执行下面这个脚本, 或者执行

from xinference.client import Client# url 可以是local的端口 也可以是外接的端口
url = "http://172.19.0.1:6006"
print(url)client = Client(url)
model_uid = client.launch_model(model_name="bge-reranker-base", model_type="rerank")
model = client.get_model(model_uid)query = "A man is eating pasta."
corpus = ["A man is eating food.","A man is eating a piece of bread.","The girl is carrying a baby.","A man is riding a horse.","A woman is playing violin."
]
print(model.rerank(corpus, query))

或者执行查看已经部署好的模型

xinferencelist

如果需要释放资源

xinferenceterminate--model-uid"my-llama-2"

最后如果需要外网访问,需要查找本地IP地址 即 http://<Machine_IP>:<端口port> , 查找IP地址的方式如下。

# Windows
ipconfig/all# Linux
hostname -I

这篇关于自然语言处理: 第十三章Xinference部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/754865

相关文章

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Java堆转储文件之1.6G大文件处理完整指南

《Java堆转储文件之1.6G大文件处理完整指南》堆转储文件是优化、分析内存消耗的重要工具,:本文主要介绍Java堆转储文件之1.6G大文件处理的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言文件为什么这么大?如何处理这个文件?分析文件内容(推荐)删除文件(如果不需要)查看错误来源如何避

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

MySQL 主从复制部署及验证(示例详解)

《MySQL主从复制部署及验证(示例详解)》本文介绍MySQL主从复制部署步骤及学校管理数据库创建脚本,包含表结构设计、示例数据插入和查询语句,用于验证主从同步功能,感兴趣的朋友一起看看吧... 目录mysql 主从复制部署指南部署步骤1.环境准备2. 主服务器配置3. 创建复制用户4. 获取主服务器状态5

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与