2.2.7 hadoop体系之离线计算-mapreduce分布式计算-流量统计之统计求和

本文主要是介绍2.2.7 hadoop体系之离线计算-mapreduce分布式计算-流量统计之统计求和,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.需求分析

2.代码实现

2.1 数据展示

2.2 解决思路

2.3 代码结构

2.3.1 FlowBean

2.3.2 FlowCountMapper

2.3.3 FlowCountReduce

2.3.4 JobMain

3.运行及结果分析

3.1 准备工作

3.2 运行代码及结果展示


1.需求分析

统计求和:统计每个手机号上行流量总和下行流量总和上行总流量之和下行总流量之和

分析:以手机号码作为key值,上行流量,下行流量,上行总流量,下行总流量四个字段作为value值,然后以这个key,和value作为map阶段的输出,reduce阶段的输入

2.代码实现

2.1 数据展示

2.2 解决思路

2.3 代码结构

2.3.1 FlowBean

package ucas.mapreduce_flowcount;import org.apache.hadoop.io.Writable;import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;public class FlowBean implements Writable {private Integer upFlow;private Integer downFlow;private Integer upCountFlow;private Integer downCountFlow;public Integer getUpFlow() {return upFlow;}public void setUpFlow(Integer upFlow) {this.upFlow = upFlow;}public Integer getDownFlow() {return downFlow;}public void setDownFlow(Integer downFlow) {this.downFlow = downFlow;}public Integer getUpCountFlow() {return upCountFlow;}public void setUpCountFlow(Integer upCountFlow) {this.upCountFlow = upCountFlow;}public Integer getDownCountFlow() {return downCountFlow;}public void setDownCountFlow(Integer downCountFlow) {this.downCountFlow = downCountFlow;}@Overridepublic String toString() {returnupFlow +"\t" + downFlow +"\t" + upCountFlow +"\t" + downCountFlow;}@Overridepublic void write(DataOutput dataOutput) throws IOException {dataOutput.writeInt(upFlow);dataOutput.writeInt(downFlow);dataOutput.writeInt(upCountFlow);dataOutput.writeInt(downCountFlow);}@Overridepublic void readFields(DataInput dataInput) throws IOException {this.upFlow = dataInput.readInt();this.downFlow = dataInput.readInt();this.upCountFlow = dataInput.readInt();this.downCountFlow = dataInput.readInt();}
}

2.3.2 FlowCountMapper

package ucas.mapreduce_flowcount;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;public class FlowCountMapper extends Mapper<LongWritable,Text,Text,FlowBean> {@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {//1:拆分手机号String[] split = value.toString().split("\t");String phoneNum = split[1];//2:获取四个流量字段FlowBean flowBean = new FlowBean();flowBean.setUpFlow(Integer.parseInt(split[6]));flowBean.setDownFlow(Integer.parseInt(split[7]));flowBean.setUpCountFlow(Integer.parseInt(split[8]));flowBean.setDownCountFlow(Integer.parseInt(split[9]));//3:将k2和v2写入上下文中context.write(new Text(phoneNum), flowBean);}
}

2.3.3 FlowCountReduce

package ucas.mapreduce_flowcount;import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;public class FlowCountReducer extends Reducer<Text,FlowBean,Text,FlowBean> {@Overrideprotected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {//封装新的FlowBeanFlowBean flowBean = new FlowBean();Integer upFlow = 0;Integer  downFlow = 0;Integer upCountFlow = 0;Integer downCountFlow = 0;for (FlowBean value : values) {upFlow  += value.getUpFlow();downFlow += value.getDownFlow();upCountFlow += value.getUpCountFlow();downCountFlow += value.getDownCountFlow();}flowBean.setUpFlow(upFlow);flowBean.setDownFlow(downFlow);flowBean.setUpCountFlow(upCountFlow);flowBean.setDownCountFlow(downCountFlow);//将K3和V3写入上下文中context.write(key, flowBean);}
}

2.3.4 JobMain

package ucas.mapreduce_flowcount;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;public class JobMain extends Configured  implements Tool {@Overridepublic int run(String[] strings) throws Exception {//创建一个任务对象Job job = Job.getInstance(super.getConf(), "mapreduce_flowcount");//打包放在集群运行时,需要做一个配置job.setJarByClass(JobMain.class);//第一步:设置读取文件的类: K1 和V1job.setInputFormatClass(TextInputFormat.class);TextInputFormat.addInputPath(job, new Path("hdfs://192.168.0.101:8020/input/flowcount"));//第二步:设置Mapper类job.setMapperClass(FlowCountMapper.class);//设置Map阶段的输出类型: k2 和V2的类型job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(FlowBean.class);//第三,四,五,六步采用默认方式(分区,排序,规约,分组)//第七步 :设置文的Reducer类job.setReducerClass(FlowCountReducer.class);//设置Reduce阶段的输出类型job.setOutputKeyClass(Text.class);job.setOutputValueClass(FlowBean.class);//设置Reduce的个数//第八步:设置输出类job.setOutputFormatClass(TextOutputFormat.class);//设置输出的路径TextOutputFormat.setOutputPath(job, new Path("hdfs://192.168.0.101:8020/out/flowcount_out"));boolean b = job.waitForCompletion(true);return b?0:1;}public static void main(String[] args) throws Exception {Configuration configuration = new Configuration();//启动一个任务int run = ToolRunner.run(configuration, new JobMain(), args);System.exit(run);}}

3.运行及结果分析

3.1 准备工作

node01节点创建文件夹,并且上传文件,IDEA打包jar包,并且上传至 /export/software

3.2 运行代码及结果展示

运行命令:

hadoop jar day04_mapreduce_combiner-1.0-SNAPSHOT.jar ucas.mapreduce_flowcount.JobMain

运行计数器统计:

2020-10-11 00:00:04,735 INFO mapreduce.Job:  map 0% reduce 0%
2020-10-11 00:00:11,866 INFO mapreduce.Job:  map 100% reduce 0%
2020-10-11 00:00:18,936 INFO mapreduce.Job:  map 100% reduce 100%
2020-10-11 00:00:24,066 INFO mapreduce.Job: Job job_1602327055253_0004 completed successfully
2020-10-11 00:00:24,238 INFO mapreduce.Job: Counters: 53File System CountersFILE: Number of bytes read=663FILE: Number of bytes written=432667FILE: Number of read operations=0FILE: Number of large read operations=0FILE: Number of write operations=0HDFS: Number of bytes read=2588HDFS: Number of bytes written=556HDFS: Number of read operations=8HDFS: Number of large read operations=0HDFS: Number of write operations=2Job Counters Launched map tasks=1Launched reduce tasks=1Data-local map tasks=1Total time spent by all maps in occupied slots (ms)=5093Total time spent by all reduces in occupied slots (ms)=4175Total time spent by all map tasks (ms)=5093Total time spent by all reduce tasks (ms)=4175Total vcore-milliseconds taken by all map tasks=5093Total vcore-milliseconds taken by all reduce tasks=4175Total megabyte-milliseconds taken by all map tasks=5215232Total megabyte-milliseconds taken by all reduce tasks=4275200Map-Reduce FrameworkMap input records=22Map output records=22Map output bytes=613Map output materialized bytes=663Input split bytes=120Combine input records=0Combine output records=0Reduce input groups=21Reduce shuffle bytes=663Reduce input records=22Reduce output records=21Spilled Records=44Shuffled Maps =1Failed Shuffles=0Merged Map outputs=1GC time elapsed (ms)=170CPU time spent (ms)=2360Physical memory (bytes) snapshot=478408704Virtual memory (bytes) snapshot=4846075904Total committed heap usage (bytes)=303030272Peak Map Physical memory (bytes)=371359744Peak Map Virtual memory (bytes)=2409140224Peak Reduce Physical memory (bytes)=107048960Peak Reduce Virtual memory (bytes)=2436935680Shuffle ErrorsBAD_ID=0CONNECTION=0IO_ERROR=0WRONG_LENGTH=0WRONG_MAP=0WRONG_REDUCE=0File Input Format Counters Bytes Read=2468File Output Format Counters Bytes Written=556

运行结果展示:

这篇关于2.2.7 hadoop体系之离线计算-mapreduce分布式计算-流量统计之统计求和的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/754517

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计

Python中经纬度距离计算的实现方式

《Python中经纬度距离计算的实现方式》文章介绍Python中计算经纬度距离的方法及中国加密坐标系转换工具,主要方法包括geopy(Vincenty/Karney)、Haversine、pyproj... 目录一、基本方法1. 使用geopy库(推荐)2. 手动实现 Haversine 公式3. 使用py

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Java计算经纬度距离的示例代码

《Java计算经纬度距离的示例代码》在Java中计算两个经纬度之间的距离,可以使用多种方法(代码示例均返回米为单位),文中整理了常用的5种方法,感兴趣的小伙伴可以了解一下... 目录1. Haversine公式(中等精度,推荐通用场景)2. 球面余弦定理(简单但精度较低)3. Vincenty公式(高精度,