2.2.7 hadoop体系之离线计算-mapreduce分布式计算-流量统计之统计求和

本文主要是介绍2.2.7 hadoop体系之离线计算-mapreduce分布式计算-流量统计之统计求和,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.需求分析

2.代码实现

2.1 数据展示

2.2 解决思路

2.3 代码结构

2.3.1 FlowBean

2.3.2 FlowCountMapper

2.3.3 FlowCountReduce

2.3.4 JobMain

3.运行及结果分析

3.1 准备工作

3.2 运行代码及结果展示


1.需求分析

统计求和:统计每个手机号上行流量总和下行流量总和上行总流量之和下行总流量之和

分析:以手机号码作为key值,上行流量,下行流量,上行总流量,下行总流量四个字段作为value值,然后以这个key,和value作为map阶段的输出,reduce阶段的输入

2.代码实现

2.1 数据展示

2.2 解决思路

2.3 代码结构

2.3.1 FlowBean

package ucas.mapreduce_flowcount;import org.apache.hadoop.io.Writable;import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;public class FlowBean implements Writable {private Integer upFlow;private Integer downFlow;private Integer upCountFlow;private Integer downCountFlow;public Integer getUpFlow() {return upFlow;}public void setUpFlow(Integer upFlow) {this.upFlow = upFlow;}public Integer getDownFlow() {return downFlow;}public void setDownFlow(Integer downFlow) {this.downFlow = downFlow;}public Integer getUpCountFlow() {return upCountFlow;}public void setUpCountFlow(Integer upCountFlow) {this.upCountFlow = upCountFlow;}public Integer getDownCountFlow() {return downCountFlow;}public void setDownCountFlow(Integer downCountFlow) {this.downCountFlow = downCountFlow;}@Overridepublic String toString() {returnupFlow +"\t" + downFlow +"\t" + upCountFlow +"\t" + downCountFlow;}@Overridepublic void write(DataOutput dataOutput) throws IOException {dataOutput.writeInt(upFlow);dataOutput.writeInt(downFlow);dataOutput.writeInt(upCountFlow);dataOutput.writeInt(downCountFlow);}@Overridepublic void readFields(DataInput dataInput) throws IOException {this.upFlow = dataInput.readInt();this.downFlow = dataInput.readInt();this.upCountFlow = dataInput.readInt();this.downCountFlow = dataInput.readInt();}
}

2.3.2 FlowCountMapper

package ucas.mapreduce_flowcount;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;public class FlowCountMapper extends Mapper<LongWritable,Text,Text,FlowBean> {@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {//1:拆分手机号String[] split = value.toString().split("\t");String phoneNum = split[1];//2:获取四个流量字段FlowBean flowBean = new FlowBean();flowBean.setUpFlow(Integer.parseInt(split[6]));flowBean.setDownFlow(Integer.parseInt(split[7]));flowBean.setUpCountFlow(Integer.parseInt(split[8]));flowBean.setDownCountFlow(Integer.parseInt(split[9]));//3:将k2和v2写入上下文中context.write(new Text(phoneNum), flowBean);}
}

2.3.3 FlowCountReduce

package ucas.mapreduce_flowcount;import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;public class FlowCountReducer extends Reducer<Text,FlowBean,Text,FlowBean> {@Overrideprotected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {//封装新的FlowBeanFlowBean flowBean = new FlowBean();Integer upFlow = 0;Integer  downFlow = 0;Integer upCountFlow = 0;Integer downCountFlow = 0;for (FlowBean value : values) {upFlow  += value.getUpFlow();downFlow += value.getDownFlow();upCountFlow += value.getUpCountFlow();downCountFlow += value.getDownCountFlow();}flowBean.setUpFlow(upFlow);flowBean.setDownFlow(downFlow);flowBean.setUpCountFlow(upCountFlow);flowBean.setDownCountFlow(downCountFlow);//将K3和V3写入上下文中context.write(key, flowBean);}
}

2.3.4 JobMain

package ucas.mapreduce_flowcount;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;public class JobMain extends Configured  implements Tool {@Overridepublic int run(String[] strings) throws Exception {//创建一个任务对象Job job = Job.getInstance(super.getConf(), "mapreduce_flowcount");//打包放在集群运行时,需要做一个配置job.setJarByClass(JobMain.class);//第一步:设置读取文件的类: K1 和V1job.setInputFormatClass(TextInputFormat.class);TextInputFormat.addInputPath(job, new Path("hdfs://192.168.0.101:8020/input/flowcount"));//第二步:设置Mapper类job.setMapperClass(FlowCountMapper.class);//设置Map阶段的输出类型: k2 和V2的类型job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(FlowBean.class);//第三,四,五,六步采用默认方式(分区,排序,规约,分组)//第七步 :设置文的Reducer类job.setReducerClass(FlowCountReducer.class);//设置Reduce阶段的输出类型job.setOutputKeyClass(Text.class);job.setOutputValueClass(FlowBean.class);//设置Reduce的个数//第八步:设置输出类job.setOutputFormatClass(TextOutputFormat.class);//设置输出的路径TextOutputFormat.setOutputPath(job, new Path("hdfs://192.168.0.101:8020/out/flowcount_out"));boolean b = job.waitForCompletion(true);return b?0:1;}public static void main(String[] args) throws Exception {Configuration configuration = new Configuration();//启动一个任务int run = ToolRunner.run(configuration, new JobMain(), args);System.exit(run);}}

3.运行及结果分析

3.1 准备工作

node01节点创建文件夹,并且上传文件,IDEA打包jar包,并且上传至 /export/software

3.2 运行代码及结果展示

运行命令:

hadoop jar day04_mapreduce_combiner-1.0-SNAPSHOT.jar ucas.mapreduce_flowcount.JobMain

运行计数器统计:

2020-10-11 00:00:04,735 INFO mapreduce.Job:  map 0% reduce 0%
2020-10-11 00:00:11,866 INFO mapreduce.Job:  map 100% reduce 0%
2020-10-11 00:00:18,936 INFO mapreduce.Job:  map 100% reduce 100%
2020-10-11 00:00:24,066 INFO mapreduce.Job: Job job_1602327055253_0004 completed successfully
2020-10-11 00:00:24,238 INFO mapreduce.Job: Counters: 53File System CountersFILE: Number of bytes read=663FILE: Number of bytes written=432667FILE: Number of read operations=0FILE: Number of large read operations=0FILE: Number of write operations=0HDFS: Number of bytes read=2588HDFS: Number of bytes written=556HDFS: Number of read operations=8HDFS: Number of large read operations=0HDFS: Number of write operations=2Job Counters Launched map tasks=1Launched reduce tasks=1Data-local map tasks=1Total time spent by all maps in occupied slots (ms)=5093Total time spent by all reduces in occupied slots (ms)=4175Total time spent by all map tasks (ms)=5093Total time spent by all reduce tasks (ms)=4175Total vcore-milliseconds taken by all map tasks=5093Total vcore-milliseconds taken by all reduce tasks=4175Total megabyte-milliseconds taken by all map tasks=5215232Total megabyte-milliseconds taken by all reduce tasks=4275200Map-Reduce FrameworkMap input records=22Map output records=22Map output bytes=613Map output materialized bytes=663Input split bytes=120Combine input records=0Combine output records=0Reduce input groups=21Reduce shuffle bytes=663Reduce input records=22Reduce output records=21Spilled Records=44Shuffled Maps =1Failed Shuffles=0Merged Map outputs=1GC time elapsed (ms)=170CPU time spent (ms)=2360Physical memory (bytes) snapshot=478408704Virtual memory (bytes) snapshot=4846075904Total committed heap usage (bytes)=303030272Peak Map Physical memory (bytes)=371359744Peak Map Virtual memory (bytes)=2409140224Peak Reduce Physical memory (bytes)=107048960Peak Reduce Virtual memory (bytes)=2436935680Shuffle ErrorsBAD_ID=0CONNECTION=0IO_ERROR=0WRONG_LENGTH=0WRONG_MAP=0WRONG_REDUCE=0File Input Format Counters Bytes Read=2468File Output Format Counters Bytes Written=556

运行结果展示:

这篇关于2.2.7 hadoop体系之离线计算-mapreduce分布式计算-流量统计之统计求和的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/754517

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Java计算经纬度距离的示例代码

《Java计算经纬度距离的示例代码》在Java中计算两个经纬度之间的距离,可以使用多种方法(代码示例均返回米为单位),文中整理了常用的5种方法,感兴趣的小伙伴可以了解一下... 目录1. Haversine公式(中等精度,推荐通用场景)2. 球面余弦定理(简单但精度较低)3. Vincenty公式(高精度,

Java资源管理和引用体系的使用详解

《Java资源管理和引用体系的使用详解》:本文主要介绍Java资源管理和引用体系的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Java的引用体系1、强引用 (Strong Reference)2、软引用 (Soft Reference)3、弱引用 (W

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

一文详解SQL Server如何跟踪自动统计信息更新

《一文详解SQLServer如何跟踪自动统计信息更新》SQLServer数据库中,我们都清楚统计信息对于优化器来说非常重要,所以本文就来和大家简单聊一聊SQLServer如何跟踪自动统计信息更新吧... SQL Server数据库中,我们都清楚统计信息对于优化器来说非常重要。一般情况下,我们会开启"自动更新

Nginx如何进行流量按比例转发

《Nginx如何进行流量按比例转发》Nginx可以借助split_clients指令或通过weight参数以及Lua脚本实现流量按比例转发,下面小编就为大家介绍一下两种方式具体的操作步骤吧... 目录方式一:借助split_clients指令1. 配置split_clients2. 配置后端服务器组3. 配