Bayer数据的处理

2024-02-27 20:58
文章标签 数据 处理 bayer

本文主要是介绍Bayer数据的处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文地址:http://www.cnblogs.com/lin1270/archive/2010/12/01/1893647.html

Bayer是相机内部的原始图片, 一般后缀名为.raw. 很多软件都可以查看, 比如PS.

我们相机拍照下来存储在存储卡上的.jpeg或其它格式的图片, 都是从.raw格式转化

过来的. .raw格式内部的存储方式有多种, 但不管如何, 都是前两行的排列不同. 其

格式可能如下:

G R G R G R G R

B G B G B G B G

G R G R G R G R

B G B G B G B G

横为2的倍数, 竖为4的倍数, 它们构成了分辨率. 如, 上面则代表了 8 * 4 分辨率的

Bayer图.

我们要知道的是, G = 2 * R 及 G = 2 * B, 即绿色值为红色值或蓝色值的两倍, 因

为人眼对绿色更敏感, 所以绿色的分量更重.

下面说一下从bayer转换成rgb图的算法, RGB图, 即为三色图, 一个像素点就由RGB

三种颜色构成的混合色, 而bayer图一个像素就只有一个颜色, 或R或G或B. 因为bayer

一个像素点只有一种颜色, 需要借助这个像素点周围的颜色对它进行插值(填充)另外的

两种颜色, 它本身的颜色就不用插了. 一般的算法是:

对于插入R和B,

Rx = ( R1 + R2 ) / 2; 或-------------取上边和下边的平均值, 或是左边和右边的平均值

Rx = ( R1 + R2 + R3 + R4 ) / 4;----取四个边的平均值

B同理. 如:

G B G

R G R

G B G

对于中间的G, 它缺少 R和B, 用上下和左右的平均值进行求值.

对于

B G B

G R G

B G B

这个图呢, 中间点R, 缺少G和B, G暂时没讨论, 那么 B, 就是从R的四个B角进行求平均值.

==============================================

如果插入G, 稍有些复杂.

不过一般的算法与R和B一样, 复杂的算法, 其复杂程度也提升一倍, 不过精度更高, 如果对于

视频监测系统来说, 精度相对来说不必要求太高, 用R或B的解法即可. 下面说复杂的:

对于图:

          R1

          G1

 R4 G4 R G2 R2

          G3

          R3

对于中间点R, 它需要插入G和B, B不讨论, 主要讨论G, 它周围有四个点G1, G2, G3, G4.

          ( G1 + G3 ) / 2--------------如果 |R1-R3| < |R2-R4|

G(R) = ( G2 + G4 ) / 2-------------如果 |R1-R3| > |R2-R4|

          ( G1 + G2 + G3 + G4 ) / 4--如果 |R1-R3| = |R2-R4|

如果周围出现的像素点颜色为B, 就应该比较|B1-B3|与|B2-B4|的值.

====================================================

还有关于将RGB格式转换为YUV格式的算法, 这里不想讨论了.

这里要注意的是, bayer每个像素的值是8位的. 但是有的相机的bayer格式却有10位, 12位

以及14位, 16位的, 那么如何将这些高于8位的数据转换为8位数据呢?. 拿12位数据来说, 有的

人是取高8位或是低8位, 那么这样就会出现一个问题, 这张图像会有一个斜度, 不是偏亮就是偏

暗, 或是出现其它乱七八糟的问题, 颜色问题总是不能令人满意. 这个时候就要去较正它, 无疑是

浪费了时间.

另一种算法是使用log映射, 据老外说, 这种转换法具有较高的精度. 拿12位来说, 一般转换算法:

f(in) = 2 ^ ( log(in) * 8 / 12 )

转换图为:

|8                                        .

|                      .   

|        .

|_______________________12

因为log256 = 8, log4096 = 12, 对了log是以2为底哦.

做得更好一点的算法, 可能根据提供的曝光等其它因素不同, 而将算法进行调整, 这样当一些意外

事件发生时, 产生的图片也不会失真严重.

如有何疑问, 请致信: 414078791@qq.com

这篇关于Bayer数据的处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/753569

相关文章

电脑提示xlstat4.dll丢失怎么修复? xlstat4.dll文件丢失处理办法

《电脑提示xlstat4.dll丢失怎么修复?xlstat4.dll文件丢失处理办法》长时间使用电脑,大家多少都会遇到类似dll文件丢失的情况,不过,解决这一问题其实并不复杂,下面我们就来看看xls... 在Windows操作系统中,xlstat4.dll是一个重要的动态链接库文件,通常用于支持各种应用程序

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

Golang 日志处理和正则处理的操作方法

《Golang日志处理和正则处理的操作方法》:本文主要介绍Golang日志处理和正则处理的操作方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录1、logx日志处理1.1、logx简介1.2、日志初始化与配置1.3、常用方法1.4、配合defer

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据