mysql锁-这条sql加了哪些锁

2024-02-27 06:52
文章标签 sql mysql database 这条

本文主要是介绍mysql锁-这条sql加了哪些锁,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1、 InnoDB的三种行锁
  • 2、常见的加锁语句
    • 2.1、常见隐式加锁语句
    • 2.1、常见显示加锁语句
  • 3、加锁的2条规则
  • 4、案例
    • 4.1、唯一索引等值查询
    • 4.2、唯一索引范围查询
    • 4.3、非唯一索引等值查询
    • 4.4、非唯一索引范围查询

InnoDB 存储引擎中的行锁的加锁规则。

1、 InnoDB的三种行锁

Record Lock(记录锁):锁住某一行记录
Gap Lock(间隙锁):锁住一段左开右开的区间
Next-key Lock(临键锁):锁住一段左开右闭的区间 (next-key lock 实际就是 间隙锁+记录锁)

2、常见的加锁语句

2.1、常见隐式加锁语句

1)、党见的DML语句(update、delete、insert),InnoDB 会自动给相应的记录行加写锁
2)、默认情况下对于普通 SELECT 语句,InnoDB 不会加任何锁,但是在 Serializable 隔离级别下会加行级读锁

2.1、常见显示加锁语句

1)、SELECT * FROM table_name WHERE … FOR UPDATE,加行级写锁

2)、SELECT * FROM table_name WHERE … LOCK IN SHARE MODE,加行级读锁

3、加锁的2条规则

1)查找过程中访问到的对象才会加锁

2)加锁的基本单位是 Next-key Lock

4、案例

一张order表,id为主键(唯一索引),order_id普通索引(非唯一索引),remark普通列(无索引)

idorder_idremark
104a
158b
2016c
2532d
3064e

4.1、唯一索引等值查询

唯一索引等值查询时,查询的记录是否存在,加锁的规则也会不同:
1)查询记录存在时,Next-key Lock会退化成记录锁
2)查询记录不存在时,Next-key Lock会退化成间隙锁

  • 查询记录存在
 SELECT * from t_order to2 where id = 25 for update;

结合加锁的两条核心:查找过程中访问到的对象才会加锁 + 加锁的基本单位是 Next-key Lock(左开右闭),我们可以分析出,这条语句的加锁范围是 (20, 25]

不过,由于这个唯一索引等值查询的记录 id = 25 是存在的,因此,Next-key Lock 会退化成记录锁,因此最终的加锁范围是 id = 25 这一行

可以在mysql客户端开启2个事物验证:

事物一:
start transaction; 
//锁住记录Id= 25的这条
select * from t_order to2 
where id = 25
for update
commit;
事物二:
start transaction; 
//可以插入成功
insert into t_order(id,order_id,remark )values('21','44','f')
rollback;
  • 查询的记录不存在

再来看查询的记录不存在的案例:

SELECT * from t_order to2 where id = 21;

结合加锁的两条核心:查找过程中访问到的对象才会加锁 + 加锁的基本单位是 Next-key Lock(左开右闭),我们可以分析出,这条语句的加锁范围是 (20, 25]

为什么是 (20,25] 而不是 (20, 22],因为 id = 22 的记录不存在,InnoDB 先找到 id = 20 的记录,发现不匹配,于是继续往下找,发现 id = 25,因此,id = 25 的这一行被扫描到了,所以整体的加锁范围是 (20, 25]

事物一:
start transaction; 
//锁住记录Id= 25的这条
select * from t_order to2 
where id = 25
for update
commit;
事物二:
start transaction; 
//阻塞,等待事物一提交,
insert into t_order(id,order_id,remark )values('21','44','f')
rollback;

4.2、唯一索引范围查询

唯一索引范围查询的规则和等值查询的规则一样,只有一个区别,就是唯一索引的范围查询需要一直向右遍历到第一个不满足条件的记录

select * from t_order to2 
where id >= 20 and id < 22
for update;

先来看语句查询条件的前半部分 id >= 20,因此,这条语句最开始要找的第一行是 id = 20,结合加锁的两个核心,需要加上 Next-key Lock (15,20]。又由于 id 是唯一索引,且 id = 20 的这行记录是存在的,因此会退化成记录锁,也就是只会对 id = 20 这一行加锁。

再来看语句查询条件的后半部分 id < 22,由于是范围查找,就会继续往后找第一个不满足条件的记录,也就是会找到 id = 25 这一行停下来,然后加 Next-key Lock (20, 25],重点来了,但由于 id = 25 不满足 id < 22,因此会退化成间隙锁,加锁范围变为 (20, 25)
所以,上述语句在主键 id 上的最终的加锁范围是 Record Lock id = 20 以及 Gap Lock (20, 25)

4.3、非唯一索引等值查询

非唯一索引进行等值查询的时候,根据查询的记录是否存在,加锁的规则会有所不同:
1、当查询的记录是存在的,除了会加 Next-key Lock 外,还会额外加间隙锁(规则是向下遍历到第一个不符合条件的值才能停止),也就是会加两把锁

查找记录的左区间加 Next-key Lock,右区间加 Gap lock

2、当查询的记录是不存在的,Next-key Lock 会退化成间隙锁(这个规则和唯一索引的等值查询是一样的)

  • 查询记录存在
select * from t_order to2 
where order_id =16
for update;

结合加锁的两条核心,这条语句首先会对普通索引 a 加上 Next-key Lock,范围是 (8,16]

又因为是非唯一索引等值查询,且查询的记录 order_id = 16 是存在的,所以还会加上间隙锁,规则是向下遍历到第一个不符合条件的值才能停止,因此间隙锁的范围是 (16,32)

所以,上述语句在普通索引order_id 上的最终加锁范围是 Next-key Lock (8,16] 以及 Gap Lock (16,32)。

验证,开启2个事物:

事物一:
start transaction; 
select * from t_order to2 
where order_id =16
for update;
commit;事物二:
start transaction; 
//阻塞,等待事物一提交
INSERT into t_order(id,order_id ,remark )values ('35','9','ffff')
commit;
  • 查询记录不存在
select * from t_order to2 
where order_id =18
for update;

结合加锁的两条核心,这条语句首先会对普通索引 order_id 加上 Next-key Lock,范围是 (16,32]

但是由于查询的记录order_id = 18 是不存在的,因此 Next-key Lock 会退化为间隙锁,即最终在普通索引 a 上的加锁范围是 (16,32)。

4.4、非唯一索引范围查询

范围查询需要一直向右遍历到第一个不满足条件的记录,和唯一索引范围查询不同的是,非唯一索引的范围查询并不会退化成 Record Lock 或者 Gap Lock。

start transaction; 
select * from t_order to2 
where order_id >=16 and order_id <18
for update;

先来看语句查询条件的前半部分 order_id >= 16,因此,这条语句最开始要找的第一行是 order_id = 16,结合加锁的两个核心,需要加上 Next-key Lock (8,16]。虽然非唯一索引 order_id = 16 的这行记录是存在的,但此时并不会像唯一索引那样退化成记录锁。

再来看语句查询条件的后半部分 order_id < 18,由于是范围查找,就会继续往后找第一个不满足条件的记录,也就是会找到 id = 32 这一行停下来,然后加 Next-key Lock (16, 32]。虽然 id = 32 不满足 id < 18,但此时并不会向唯一索引那样退化成间隙锁。

所以,上述语句在普通索引 a 上的最终的加锁范围是 Next-key Lock (8, 16] 和 (16, 32],也就是 (8, 32]。

这篇关于mysql锁-这条sql加了哪些锁的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/751543

相关文章

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

MySQL中On duplicate key update的实现示例

《MySQL中Onduplicatekeyupdate的实现示例》ONDUPLICATEKEYUPDATE是一种MySQL的语法,它在插入新数据时,如果遇到唯一键冲突,则会执行更新操作,而不是抛... 目录1/ ON DUPLICATE KEY UPDATE的简介2/ ON DUPLICATE KEY UP

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

使用shardingsphere实现mysql数据库分片方式

《使用shardingsphere实现mysql数据库分片方式》本文介绍如何使用ShardingSphere-JDBC在SpringBoot中实现MySQL水平分库,涵盖分片策略、路由算法及零侵入配置... 目录一、ShardingSphere 简介1.1 对比1.2 核心概念1.3 Sharding-Sp

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

Mac电脑如何通过 IntelliJ IDEA 远程连接 MySQL

《Mac电脑如何通过IntelliJIDEA远程连接MySQL》本文详解Mac通过IntelliJIDEA远程连接MySQL的步骤,本文通过图文并茂的形式给大家介绍的非常详细,感兴趣的朋友跟... 目录MAC电脑通过 IntelliJ IDEA 远程连接 mysql 的详细教程一、前缀条件确认二、打开 ID

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

Go语言连接MySQL数据库执行基本的增删改查

《Go语言连接MySQL数据库执行基本的增删改查》在后端开发中,MySQL是最常用的关系型数据库之一,本文主要为大家详细介绍了如何使用Go连接MySQL数据库并执行基本的增删改查吧... 目录Go语言连接mysql数据库准备工作安装 MySQL 驱动代码实现运行结果注意事项Go语言执行基本的增删改查准备工作