Gemma谷歌(google)开源大模型微调实战(fintune gemma-2b)

2024-02-27 06:44

本文主要是介绍Gemma谷歌(google)开源大模型微调实战(fintune gemma-2b),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Gemma-SFT

Gemma-SFT(谷歌, Google), gemma-2b/gemma-7b微调(transformers)/LORA(peft)/推理

项目地址

  • https://github.com/yongzhuo/gemma-sft
  • 全部weights要用fp32/tf32, 使用fp16微调十几或几十的步数后大概率loss=nan;(即便layer-norm是fp32也不行, LLaMA就没有这个问题, 原因暂时未知)

备注

1. 非常重要: 全部weights要用fp32/tf32, 使用fp16微调十几或几十的步数后大概率loss=nan;(即便layer-norm是fp32也不行, LLaMA就没有这个问题, 原因暂时未知)
2. transformers需要4.38及以上;
3. gemma词典大小为25w,多语言版本,包含繁/简体;
4. gemma网络架构同Llama, gemma-2b为18层网络, gemma-7b为28层网络; 
5. prompt:5.1 标准格式为: 
bos + input + eos + bos + output + eos5.2 prompt格式为: 
<start_of_turn>user
input<end_of_turn>
<start_of_turn>model
output<end_of_turn>6 微调输入输出:输入:"<start_of_turn>user\n{问题}<end_of_turn>\n"输出:"<start_of_turn>model\n{答案}<end_of_turn>"
7 推理输入输出(assistant\n放置位置不同):输入:"<start_of_turn>user\n{问题}<end_of_turn>\n<start_of_turn>model\n"输出:"{答案}<end_of_turn>"
8. 网络各层名称
('model.embed_tokens.weight', torch.bfloat16, True)
......
('model.layers.17.self_attn.q_proj.weight', torch.bfloat16, True)
('model.layers.17.self_attn.k_proj.weight', torch.bfloat16, True)
('model.layers.17.self_attn.v_proj.weight', torch.bfloat16, True)
('model.layers.17.self_attn.o_proj.weight', torch.bfloat16, True)
('model.layers.17.mlp.gate_proj.weight', torch.bfloat16, True)
('model.layers.17.mlp.up_proj.weight', torch.bfloat16, True)
('model.layers.17.mlp.down_proj.weight', torch.bfloat16, True)
('model.layers.17.input_layernorm.weight', torch.bfloat16, True)
('model.layers.17.post_attention_layernorm.weight', torch.bfloat16, True)
......
('model.norm.weight', torch.bfloat16, True)
9. RuntimeError: unscale_() has already been called on this optimizer since the last update().微调语料太少导致的

环境配置

transformers>=4.38.1
torch>=1.13.1
safetensors>=0.4.1
accelerate==0.27.1
fsspec==2023.9.2
rouge==1.0.1
nltk==3.6.6
peft>=0.2.0
numpy
tqdm

微调

地址: gemma_sft/ft_gemma配置: gemma_sft/ft_gemma/config.py
训练: python train.py
推理: python predict.py
验证: python evaluation.py
接口: python post_api.py

数据集-中文

  • https://huggingface.co/datasets/JosephusCheung/GuanacoDataset
  • https://huggingface.co/datasets/shareAI/shareGPT_cn
  • https://huggingface.co/datasets/Mutonix/RefGPT-Fact
  • https://huggingface.co/datasets/BAAI/COIG
  • https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM
  • https://github.com/carbonz0/alpaca-chinese-dataset
  • https://github.com/LianjiaTech/BELLE
  • https://github.com/PhoebusSi/Alpaca-CoT
  • https://github.com/Hello-SimpleAI/chatgpt-comparison-detection
  • https://github.com/yangjianxin1/Firefly
  • https://github.com/XueFuzhao/InstructionWild
  • https://github.com/OpenLMLab/MOSS
  • https://github.com/thu-coai/Safety-Prompts
  • https://github.com/LAION-AI/Open-Assistant
  • https://github.com/TigerResearch/TigerBot

参考/感谢

  • https://github.com/google/gemma_pytorch
  • https://huggingface.co/google/gemma-2b-it
  • https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
  • https://github.com/THUDM/ChatGLM-6B
  • https://github.com/THUDM/GLM
  • https://github.com/tatsu-lab/stanford_alpaca
  • https://github.com/LianjiaTech/BELLE
  • https://github.com/huggingface/peft
  • https://github.com/mymusise/ChatGLM-Tuning
  • https://github.com/bojone/bert4keras
  • trl
  • math23k

微调日志-advgen

在这里插入图片描述

推理日志-advgen

请输入:
类型#上衣*颜色#黑色*颜色#紫色*风格#性感*图案#字母*图案#文字*图案#线条*图案#刺绣*衣样式#卫衣*衣长#短款*衣袖型#落肩袖*衣款式#连帽
请稍等...
################################################################################################################################
{'instruction': '类型#上衣*颜色#黑色*颜色#紫色*风格#性感*图案#字母*图案#文字*图案#线条*图案#刺绣*衣样式#卫衣*衣长#短款*衣袖型#落肩袖*衣款式#连帽', 'input': '', 'output': ''}
tensor([[     2,  23055, 235345, 235502, 236524, 235287,  43972, 235345,  57988,235287,  43972, 235345, 124945, 235287,  60525, 235345, 135994, 235287,182148, 235345, 125156, 235287, 182148, 235345,  25047, 235287, 182148,235345, 179958, 235287, 182148, 235345, 237164, 240872, 235287, 236524,95243, 235345, 237587, 236524, 235287, 236524, 236045, 235345, 236809,236604, 235287, 236524, 237785, 235954, 235345, 236362, 238047, 237785,235287, 236524, 166242, 235345, 236557, 238229]])
一款个性吸睛的连帽服務卫衣,黑色系底色,增添了甜美小性感;经典的落肩短款版型,修饰出纤细的颈脖线条;个性时尚的连帽设计,搭配字母刺绣装饰,增添了甜美少女感;肩部的字母刺绣装饰,增添了时尚感,使整体更具特色;紫色的刺绣设计,丰富了视觉感,使整体更具个性。<eos>
请输入:
类型#上衣*风格#街头*图案#创意*衣样式#卫衣
请稍等...
################################################################################################################################
{'instruction': '类型#上衣*风格#街头*图案#创意*衣样式#卫衣', 'input': '', 'output': ''}
tensor([[     2,  23055, 235345, 235502, 236524, 235287,  60525, 235345, 218295,235287, 182148, 235345,  50259, 235287, 236524,  95243, 235345, 237587,236524]])
这一款卫衣采用经典的领口设计,不拘一格的设计,展现出街头风。领口的设计,不仅能够修饰脸型,还能够打造出精致的小脸,而且还能够起到遮挡口型的效果,让脸型更加小巧。领口处采用了创意的圆环装饰,让整个卫衣更加丰富,视觉上更加亮眼。卫衣采用宽大的版型设计,不挑人穿,即使是身材不那么好的人也能轻松驾驭。<eos>
请输入:

口的设计,不仅能够修饰脸型,还能够打造出精致的小脸,而且还能够起到遮挡口型的效果,让脸型更加小巧。领口处采用了创意的圆环装饰,让整个卫衣更加丰富,视觉上更加亮眼。卫衣采用宽大的版型设计,不挑人穿,即使是身材不那么好的人也能轻松驾驭。
请输入:

这篇关于Gemma谷歌(google)开源大模型微调实战(fintune gemma-2b)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/751523

相关文章

springboot项目redis缓存异常实战案例详解(提供解决方案)

《springboot项目redis缓存异常实战案例详解(提供解决方案)》redis基本上是高并发场景上会用到的一个高性能的key-value数据库,属于nosql类型,一般用作于缓存,一般是结合数据... 目录缓存异常实践案例缓存穿透问题缓存击穿问题(其中也解决了穿透问题)完整代码缓存异常实践案例Red

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

基于C#实现MQTT通信实战

《基于C#实现MQTT通信实战》MQTT消息队列遥测传输,在物联网领域应用的很广泛,它是基于Publish/Subscribe模式,具有简单易用,支持QoS,传输效率高的特点,下面我们就来看看C#实现... 目录1、连接主机2、订阅消息3、发布消息MQTT(Message Queueing Telemetr

Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例

《Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例》本文介绍Nginx+Keepalived实现Web集群高可用负载均衡的部署与测试,涵盖架构设计、环境配置、健康检查、... 目录前言一、架构设计二、环境准备三、案例部署配置 前端 Keepalived配置 前端 Nginx

Python日期和时间完全指南与实战

《Python日期和时间完全指南与实战》在软件开发领域,‌日期时间处理‌是贯穿系统设计全生命周期的重要基础能力,本文将深入解析Python日期时间的‌七大核心模块‌,通过‌企业级代码案例‌揭示最佳实践... 目录一、背景与核心价值二、核心模块详解与实战2.1 datetime模块四剑客2.2 时区处理黄金法

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R

Spring Boot集成Logback终极指南之从基础到高级配置实战指南

《SpringBoot集成Logback终极指南之从基础到高级配置实战指南》Logback是一个可靠、通用且快速的Java日志框架,作为Log4j的继承者,由Log4j创始人设计,:本文主要介绍... 目录一、Logback简介与Spring Boot集成基础1.1 Logback是什么?1.2 Sprin

Linux高并发场景下的网络参数调优实战指南

《Linux高并发场景下的网络参数调优实战指南》在高并发网络服务场景中,Linux内核的默认网络参数往往无法满足需求,导致性能瓶颈、连接超时甚至服务崩溃,本文基于真实案例分析,从参数解读、问题诊断到优... 目录一、问题背景:当并发连接遇上性能瓶颈1.1 案例环境1.2 初始参数分析二、深度诊断:连接状态与

C#实现高性能Excel百万数据导出优化实战指南

《C#实现高性能Excel百万数据导出优化实战指南》在日常工作中,Excel数据导出是一个常见的需求,然而,当数据量较大时,性能和内存问题往往会成为限制导出效率的瓶颈,下面我们看看C#如何结合EPPl... 目录一、技术方案核心对比二、各方案选型建议三、性能对比数据四、核心代码实现1. MiniExcel

POI从入门到实战轻松完成EasyExcel使用及Excel导入导出功能

《POI从入门到实战轻松完成EasyExcel使用及Excel导入导出功能》ApachePOI是一个流行的Java库,用于处理MicrosoftOffice格式文件,提供丰富API来创建、读取和修改O... 目录前言:Apache POIEasyPoiEasyExcel一、EasyExcel1.1、核心特性