Gemma谷歌(google)开源大模型微调实战(fintune gemma-2b)

2024-02-27 06:44

本文主要是介绍Gemma谷歌(google)开源大模型微调实战(fintune gemma-2b),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Gemma-SFT

Gemma-SFT(谷歌, Google), gemma-2b/gemma-7b微调(transformers)/LORA(peft)/推理

项目地址

  • https://github.com/yongzhuo/gemma-sft
  • 全部weights要用fp32/tf32, 使用fp16微调十几或几十的步数后大概率loss=nan;(即便layer-norm是fp32也不行, LLaMA就没有这个问题, 原因暂时未知)

备注

1. 非常重要: 全部weights要用fp32/tf32, 使用fp16微调十几或几十的步数后大概率loss=nan;(即便layer-norm是fp32也不行, LLaMA就没有这个问题, 原因暂时未知)
2. transformers需要4.38及以上;
3. gemma词典大小为25w,多语言版本,包含繁/简体;
4. gemma网络架构同Llama, gemma-2b为18层网络, gemma-7b为28层网络; 
5. prompt:5.1 标准格式为: 
bos + input + eos + bos + output + eos5.2 prompt格式为: 
<start_of_turn>user
input<end_of_turn>
<start_of_turn>model
output<end_of_turn>6 微调输入输出:输入:"<start_of_turn>user\n{问题}<end_of_turn>\n"输出:"<start_of_turn>model\n{答案}<end_of_turn>"
7 推理输入输出(assistant\n放置位置不同):输入:"<start_of_turn>user\n{问题}<end_of_turn>\n<start_of_turn>model\n"输出:"{答案}<end_of_turn>"
8. 网络各层名称
('model.embed_tokens.weight', torch.bfloat16, True)
......
('model.layers.17.self_attn.q_proj.weight', torch.bfloat16, True)
('model.layers.17.self_attn.k_proj.weight', torch.bfloat16, True)
('model.layers.17.self_attn.v_proj.weight', torch.bfloat16, True)
('model.layers.17.self_attn.o_proj.weight', torch.bfloat16, True)
('model.layers.17.mlp.gate_proj.weight', torch.bfloat16, True)
('model.layers.17.mlp.up_proj.weight', torch.bfloat16, True)
('model.layers.17.mlp.down_proj.weight', torch.bfloat16, True)
('model.layers.17.input_layernorm.weight', torch.bfloat16, True)
('model.layers.17.post_attention_layernorm.weight', torch.bfloat16, True)
......
('model.norm.weight', torch.bfloat16, True)
9. RuntimeError: unscale_() has already been called on this optimizer since the last update().微调语料太少导致的

环境配置

transformers>=4.38.1
torch>=1.13.1
safetensors>=0.4.1
accelerate==0.27.1
fsspec==2023.9.2
rouge==1.0.1
nltk==3.6.6
peft>=0.2.0
numpy
tqdm

微调

地址: gemma_sft/ft_gemma配置: gemma_sft/ft_gemma/config.py
训练: python train.py
推理: python predict.py
验证: python evaluation.py
接口: python post_api.py

数据集-中文

  • https://huggingface.co/datasets/JosephusCheung/GuanacoDataset
  • https://huggingface.co/datasets/shareAI/shareGPT_cn
  • https://huggingface.co/datasets/Mutonix/RefGPT-Fact
  • https://huggingface.co/datasets/BAAI/COIG
  • https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM
  • https://github.com/carbonz0/alpaca-chinese-dataset
  • https://github.com/LianjiaTech/BELLE
  • https://github.com/PhoebusSi/Alpaca-CoT
  • https://github.com/Hello-SimpleAI/chatgpt-comparison-detection
  • https://github.com/yangjianxin1/Firefly
  • https://github.com/XueFuzhao/InstructionWild
  • https://github.com/OpenLMLab/MOSS
  • https://github.com/thu-coai/Safety-Prompts
  • https://github.com/LAION-AI/Open-Assistant
  • https://github.com/TigerResearch/TigerBot

参考/感谢

  • https://github.com/google/gemma_pytorch
  • https://huggingface.co/google/gemma-2b-it
  • https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
  • https://github.com/THUDM/ChatGLM-6B
  • https://github.com/THUDM/GLM
  • https://github.com/tatsu-lab/stanford_alpaca
  • https://github.com/LianjiaTech/BELLE
  • https://github.com/huggingface/peft
  • https://github.com/mymusise/ChatGLM-Tuning
  • https://github.com/bojone/bert4keras
  • trl
  • math23k

微调日志-advgen

在这里插入图片描述

推理日志-advgen

请输入:
类型#上衣*颜色#黑色*颜色#紫色*风格#性感*图案#字母*图案#文字*图案#线条*图案#刺绣*衣样式#卫衣*衣长#短款*衣袖型#落肩袖*衣款式#连帽
请稍等...
################################################################################################################################
{'instruction': '类型#上衣*颜色#黑色*颜色#紫色*风格#性感*图案#字母*图案#文字*图案#线条*图案#刺绣*衣样式#卫衣*衣长#短款*衣袖型#落肩袖*衣款式#连帽', 'input': '', 'output': ''}
tensor([[     2,  23055, 235345, 235502, 236524, 235287,  43972, 235345,  57988,235287,  43972, 235345, 124945, 235287,  60525, 235345, 135994, 235287,182148, 235345, 125156, 235287, 182148, 235345,  25047, 235287, 182148,235345, 179958, 235287, 182148, 235345, 237164, 240872, 235287, 236524,95243, 235345, 237587, 236524, 235287, 236524, 236045, 235345, 236809,236604, 235287, 236524, 237785, 235954, 235345, 236362, 238047, 237785,235287, 236524, 166242, 235345, 236557, 238229]])
一款个性吸睛的连帽服務卫衣,黑色系底色,增添了甜美小性感;经典的落肩短款版型,修饰出纤细的颈脖线条;个性时尚的连帽设计,搭配字母刺绣装饰,增添了甜美少女感;肩部的字母刺绣装饰,增添了时尚感,使整体更具特色;紫色的刺绣设计,丰富了视觉感,使整体更具个性。<eos>
请输入:
类型#上衣*风格#街头*图案#创意*衣样式#卫衣
请稍等...
################################################################################################################################
{'instruction': '类型#上衣*风格#街头*图案#创意*衣样式#卫衣', 'input': '', 'output': ''}
tensor([[     2,  23055, 235345, 235502, 236524, 235287,  60525, 235345, 218295,235287, 182148, 235345,  50259, 235287, 236524,  95243, 235345, 237587,236524]])
这一款卫衣采用经典的领口设计,不拘一格的设计,展现出街头风。领口的设计,不仅能够修饰脸型,还能够打造出精致的小脸,而且还能够起到遮挡口型的效果,让脸型更加小巧。领口处采用了创意的圆环装饰,让整个卫衣更加丰富,视觉上更加亮眼。卫衣采用宽大的版型设计,不挑人穿,即使是身材不那么好的人也能轻松驾驭。<eos>
请输入:

口的设计,不仅能够修饰脸型,还能够打造出精致的小脸,而且还能够起到遮挡口型的效果,让脸型更加小巧。领口处采用了创意的圆环装饰,让整个卫衣更加丰富,视觉上更加亮眼。卫衣采用宽大的版型设计,不挑人穿,即使是身材不那么好的人也能轻松驾驭。
请输入:

这篇关于Gemma谷歌(google)开源大模型微调实战(fintune gemma-2b)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/751523

相关文章

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java 正则表达式的使用实战案例

《Java正则表达式的使用实战案例》本文详细介绍了Java正则表达式的使用方法,涵盖语法细节、核心类方法、高级特性及实战案例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、正则表达式语法详解1. 基础字符匹配2. 字符类([]定义)3. 量词(控制匹配次数)4. 边

Java Scanner类解析与实战教程

《JavaScanner类解析与实战教程》JavaScanner类(java.util包)是文本输入解析工具,支持基本类型和字符串读取,基于Readable接口与正则分隔符实现,适用于控制台、文件输... 目录一、核心设计与工作原理1.底层依赖2.解析机制A.核心逻辑基于分隔符(delimiter)和模式匹

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

Spring Boot 整合 SSE(Server-Sent Events)实战案例(全网最全)

《SpringBoot整合SSE(Server-SentEvents)实战案例(全网最全)》本文通过实战案例讲解SpringBoot整合SSE技术,涵盖实现原理、代码配置、异常处理及前端交互,... 目录Spring Boot 整合 SSE(Server-Sent Events)1、简述SSE与其他技术的对

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制