第四篇 FastAI中的数据增强

2024-02-27 00:32
文章标签 数据 增强 第四篇 fastai

本文主要是介绍第四篇 FastAI中的数据增强,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上一篇博客介绍了如何使用Fast AI数据模块(Data Block),便捷地构建Fast AI模型所需的数据包(Data Bunch)。在将图像数据灌入模型之前,往往需要对之进行随机变换,即做数据增强(Data Augmentation)。这可以视为一种在数据层面的正则化(也就是人为地引入一些随机扰动,避免学习器过分关注训练集的特有性质,以免产生过拟合)。本篇博客将介绍Fast AI中的数据增强模块,相关文档见文档链接。

一、Transform基类

Fast AI提供了许多图像变换函数(会在本博客的后面提到),使用这些变换函数,可以直接对图像进行变换。同时,为了给这些变换函数提供数据增强时的随机机制,Fast AI提供了一个封装类—Transform类(定义在fastai/vision/image.py文件中),该类的功能主要还包括对变换函数添加一些共有特性:如变换函数的优先级(order)、包装器的名称(变量为_wrap,对应于Image类中的相应函数,用于对变换函数调用之后的结果做进一步的操作)等。当使用该类封装的变换函数时,如果按照正常的变换函数传入相关参数,则效果与直接调用该变换函数一致,此时没有随机性因素。以Fast AI库提供的用于改变图像明暗的brightness类为例:

brightness_func = brightness(change=0.2, p=0.5)
img = open_image(img_file)
y = brightness_func(img, change=0.2)

注意:在使用Transform类包装的变换函数时直接作用于图像数据时,要按照原变换函数的签名提供完整的参数列表,如上例中change=0.2

如果使用img.apply_tfms()方式调用,则此时会存在两种随机机制:当被标注为uniform的参数为固定值时,则按照提供的p值,以概率p进行变换;当被标注为uniform的参数为区间时,则变换以概率p发生,并且该参数在所提供的区间内随机选择。

二、变换函数

相应代码见fastai/vision/transform.py

函数签名说明
brightness(x, change: uniform) → Image :: TfmLighting改变图像明暗,通过对图像的logit pixel进行加减常量实现。当change=0.5时,图像无变化;当change=1时,图像会变换为白色;当change=0时,图像会变换为白色。
contrast(x, scale:log_uniform) → Image :: TfmLighting调整对比度,通过对图像的logit pixel乘上一个常量实现。 当scale=0时,会将图像转换为灰色,当scale>1会增强图像的对比度(即明暗像素的差异更大);当scale=1时,不调整对比度。
crop(x, size, row_pct:uniform=0.5, col_pct:uniform=0.5) → Image :: TfmPixel图像裁剪,其中(row_pct, col_pct)限定了裁剪框锚点的位置,以归一化的比例进行表示。
crop_pad(x, size, padding_mode='reflection', row_pct:uniform=0.5, col_pct:uniform=0.5) → Image :: TfmCrop类似于crop(),不过裁剪框的大小可以超出图像范围,填充方法通过padding_mode指定,可选为reflectionzerosborder
dihedral(x, k:partial(uniform_int, 0, 7)) → Image :: TfmPixel镜像翻转与旋转90°。
flip_lr(x) → Image :: TfmPixel水平翻转。
jitter(c, magnitude:uniform) → Image :: TfmCoord邻域像素替换, 邻域范围由magnitude限定。
perspective_warp(c, magnitude:partial(uniform, size=8)=0, invert=False) → Image :: TfmCoord透视变换,其中manigtude为8元素集,指定了将四个角的归一化坐标变换的幅度。默认填充方法是reflection
Image.resize(self, size:Union[int,TensorImageSize])->'Image'图像缩放,使用的是torch中相应的方法。对图像而言,size为一个整数,或者TensorImageSize类型·(3, H, W),默认使用SQUISH方法。在使用数据模块的API构建数据包时,可通过设置resize_method来选择处理方式。
rotate(degrees:uniform) → Image :: TfmAffine图像旋转。
rgb_randomize(x, channel:int=None, thresh:float=0.3) → Image :: TfmPixel随机化RGB的某一通道,通过thresh限定该通道的最大值。
skew(c, direction:uniform_int, magnitude:uniform=0, invert=False) → Image :: TfmCoord扭曲,实际是通过perspective_warp()实现的。
squish(scale:uniform=1.0, row_pct:uniform=0.5, col_pct:uniform=0.5) → Image :: TfmAffine拉伸,scale<1时,为横向拉伸;scale>1时,为纵向拉伸。
symmetric_warp(c, magnitude:partial(uniform, size=4)=0, invert=False) → Image :: TfmCoord特定的透视变换。
tilt(c, direction:uniform_int, magnitude:uniform=0, invert=False) → Image :: TfmCoord倾斜。
zoom(scale:uniform=1.0, row_pct:uniform=0.5, col_pct:uniform=0.5) → Image :: TfmAffine等比例缩放。
cutout(x, n_holes:uniform_int=1, length:uniform_int=40) → Image :: TfmPixel制造孔洞。

三、get_transforms()函数

该函数会返回变换函数的两个列表,一个用于训练集,一个用于验证集。

get_transforms(do_flip:bool=True, # 是否进行水平翻转flip_vert:bool=False, #是否进行垂直翻转    max_rotate:float=10.0, max_zoom:float=1.1, max_lighting:float=0.2, max_warp:float=0.2, p_affine:float=0.75, p_lighting:float=0.75, xtra_tfms:Optional[Collection[Transform]]=None) → Collection[Transform]

具体而言,在构建数据包时,按如下方式进行使用:

data = ImageDataBunch.from_folder(path, ds_tfms=tfms, size=26)

或者

tfms = get_transforms(flip_vert=True, max_lighting=0.1, max_zoom=1.05, max_warp=0.)
data = (ImageList.from_folder(path) # 数据文件的路径 .split_by_folder()      # 按比例分割训练集和验证集    .label_from_folder()    # 指定类别标签    .transform(tfms, size=32)     # 对图像进行变换    .databunch(bs=128)    .normalize(imagenet_stats) # 数据归一化)

四、一些补充

1. fastai.vision.Image类中的图像数据究竟是以pixel存储的还是以logit存储的?

只能说,当你需要它是pixel时,它就是pixel,即img.px;当你需要它是logit_pixel时,它就是logit_pixel,即img.logit_px。这是通过Image类中的refresh()函数实现的,而每次访问img.data时,总会调用refresh()函数。如果检查到img.logit_px不为None,则可认为logit_px是最新的操作结果,则通过sigmoid函数将其变换为img.px,并置img.logit_px=None;否则返回存储的img.px。另外,需要访问img.logit_px时,若img.logit_px is None,则计算img.pxlogit,并存储在img.logit_px中。

2. crop()函数中的锚点位置图示

见下图,这样做的好处是无需判断裁剪框是否超出图像边界。

图 1. crop函数中裁剪框锚点图示
3. dihedral()函数结果图示
图 2. 翻转函数效果图示
4. 对Image对象的像素坐标的更改

jitter()这类的标记为TfmCoord的变换函数,会对图像像素坐标进行变换。这一过程是这样完成的:首先生成图像对象每个像素的归一化坐标网格(坐标分布在[-1, 1]),这一值会存储在img.flow属性中;然后对该网格进行变换;在图像像素值获取时,做完logit_pxpx的转换后,就依据img.flow对图像进行重采样。这些都是在Image.refresh()函数中实现的。

5. 补全为什么总是reflection

TfmCoordTfmAffine类的变换函数,会涉及图像像素的坐标变换,而这些变换都是通过_grid_sample()函数完成的,而_grid_sample()函数的默认补全方法就是reflection

6. Fast AI的并行处理函数函

数为fastai/core.py里的parrallel,需要传入要执行的函数和参数列表。示例如下(文档链接):

num_cpus() #获取CPU的数目
def my_func(value, index):print("Index: {}, Value: {}".format(index, value)) my_array = [i*2 for i in range(5)]
parallel(my_func, my_array, max_workers=3)

这篇关于第四篇 FastAI中的数据增强的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/750667

相关文章

SpringBoot集成EasyExcel实现百万级别的数据导入导出实践指南

《SpringBoot集成EasyExcel实现百万级别的数据导入导出实践指南》本文将基于开源项目springboot-easyexcel-batch进行解析与扩展,手把手教大家如何在SpringBo... 目录项目结构概览核心依赖百万级导出实战场景核心代码效果百万级导入实战场景监听器和Service(核心

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

pandas数据的合并concat()和merge()方式

《pandas数据的合并concat()和merge()方式》Pandas中concat沿轴合并数据框(行或列),merge基于键连接(内/外/左/右),concat用于纵向或横向拼接,merge用于... 目录concat() 轴向连接合并(1) join='outer',axis=0(2)join='o

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速